A dynamic network loading (DNL) model using a mesoscopic approach is proposed to simulate a multimodal transport network considering en-route change of the transport modes. The classic mesoscopic approach, where packets of users belonging to the same mode move following a path, is modified to take into account multiple modes interacting with each other, simultaneously and on the same multimodal network. In particular, to simulate modal change, functional aspects of multimodal arcs have been developed; those arcs are properly located on the network where modal change occurs and users are packed (or unpacked) in a new modal resource that moves up to destination or to another multimodal arc. A test on a simple network reproducing a real situation is performed in order to show model peculiarities; some indicators, used to describe performances of the considered transport system, are shown.
A Model to Simulate Multimodality in a Mesoscopic Dynamic Network Loading Framework
DI GANGI, Massimo
Primo
;Polimeni, Antonio
2017-01-01
Abstract
A dynamic network loading (DNL) model using a mesoscopic approach is proposed to simulate a multimodal transport network considering en-route change of the transport modes. The classic mesoscopic approach, where packets of users belonging to the same mode move following a path, is modified to take into account multiple modes interacting with each other, simultaneously and on the same multimodal network. In particular, to simulate modal change, functional aspects of multimodal arcs have been developed; those arcs are properly located on the network where modal change occurs and users are packed (or unpacked) in a new modal resource that moves up to destination or to another multimodal arc. A test on a simple network reproducing a real situation is performed in order to show model peculiarities; some indicators, used to describe performances of the considered transport system, are shown.File | Dimensione | Formato | |
---|---|---|---|
8436821.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.76 MB
Formato
Adobe PDF
|
2.76 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.