A quantum-classical limit of the canonical equilibrium time correlation function for a quantum system is derived. The quantum-classical limit for the dynamics is obtained for quantum systems comprising a subsystem of light particles in a bath of heavy quantum particles. In this limit the time evolution of operators is determined by a quantum-classical Liouville operator, but the full equilibrium canonical statistical description of the initial condition is retained. The quantum-classical correlation function expressions derived here provide a way to simulate the transport properties of quantum systems using quantum-classical surface-hopping dynamics combined with sampling schemes for the quantum equilibrium structure of both the subsystem of interest and its environment.
Quantum-Classical Limit of Quantum Correlation Functions
SERGI, ALESSANDRO;
2004-01-01
Abstract
A quantum-classical limit of the canonical equilibrium time correlation function for a quantum system is derived. The quantum-classical limit for the dynamics is obtained for quantum systems comprising a subsystem of light particles in a bath of heavy quantum particles. In this limit the time evolution of operators is determined by a quantum-classical Liouville operator, but the full equilibrium canonical statistical description of the initial condition is retained. The quantum-classical correlation function expressions derived here provide a way to simulate the transport properties of quantum systems using quantum-classical surface-hopping dynamics combined with sampling schemes for the quantum equilibrium structure of both the subsystem of interest and its environment.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.