Methanol, and more recently ethanol, have been deeply employed as adsorbate phase (refrigerant) in adsorption chiller and heat pump applications (e.g. refrigerator adsorption ice maker). The use of anhydrous alcohols however can cause several problems related to the corrosiveness of such molecules towards light alloys (from titanium to aluminium). The problem was already highlighted in bio-fuel technology where bio-ethanol was considered as a promise alternative to fossil hydrocarbons. Water content was observed as one of the main factors influencing corrosion rate. In the present works several accelerated corrosion tests on 6061 Aluminium alloy have been carried out in autoclave in a temperature range from 110 to 135 °C with different ethanol to aluminium mass ratio. Highly exothermic reactions related to aluminium oxidation, coupled to hydrogen evolution, have been recorded. The main drawback of hydrogen evolution is the formation of a stagnant layer over the heat exchangers surface, which can limit the ethanol vapour diffusion, thus reducing adsorption/condensation rate.

Susceptibility to corrosion of aluminium alloy components in ethanol adsorption chiller

PROVERBIO, Edoardo
Primo
;
CALABRESE, Luigi
Secondo
;
CAPRI', ANGELA;
2017-01-01

Abstract

Methanol, and more recently ethanol, have been deeply employed as adsorbate phase (refrigerant) in adsorption chiller and heat pump applications (e.g. refrigerator adsorption ice maker). The use of anhydrous alcohols however can cause several problems related to the corrosiveness of such molecules towards light alloys (from titanium to aluminium). The problem was already highlighted in bio-fuel technology where bio-ethanol was considered as a promise alternative to fossil hydrocarbons. Water content was observed as one of the main factors influencing corrosion rate. In the present works several accelerated corrosion tests on 6061 Aluminium alloy have been carried out in autoclave in a temperature range from 110 to 135 °C with different ethanol to aluminium mass ratio. Highly exothermic reactions related to aluminium oxidation, coupled to hydrogen evolution, have been recorded. The main drawback of hydrogen evolution is the formation of a stagnant layer over the heat exchangers surface, which can limit the ethanol vapour diffusion, thus reducing adsorption/condensation rate.
2017
File in questo prodotto:
File Dimensione Formato  
2017_RE_110_174.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3106769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact