Marking dependency is a powerful tool that allows different firing time distributions to be associated with a stochastic Petri net transition, depending on the marking. Through this feature, the modeler can easily and compactly represent advanced properties and behaviors of the system. While a semantics and specific solution techniques have been provided for generalized stochastic Petri nets thus covering homogeneous Markovian aspects, in the non-homogeneous/non-Markovian case marking dependency still needs to be investigated. To fill this gap, this paper provides a formalization of marking dependent semantics in non-Markovian stochastic Petri nets (NMSPNs) and a solution technique, based on phase type distributions and Kronecker algebra, able to deal with such a feature allowing both transient and steady-state analyses. To motivate the actual need of marking dependency in NMSPN modeling and to demonstrate the potential of such a feature as well as the validity of the proposed solution technique a case study on a multi-core CPU system with power management facilities is explored

Marking dependency in non-Markovian stochastic Petri nets

DISTEFANO, SALVATORE
Primo
;
LONGO, Francesco
Secondo
;
SCARPA, Marco Lucio
Ultimo
2017-01-01

Abstract

Marking dependency is a powerful tool that allows different firing time distributions to be associated with a stochastic Petri net transition, depending on the marking. Through this feature, the modeler can easily and compactly represent advanced properties and behaviors of the system. While a semantics and specific solution techniques have been provided for generalized stochastic Petri nets thus covering homogeneous Markovian aspects, in the non-homogeneous/non-Markovian case marking dependency still needs to be investigated. To fill this gap, this paper provides a formalization of marking dependent semantics in non-Markovian stochastic Petri nets (NMSPNs) and a solution technique, based on phase type distributions and Kronecker algebra, able to deal with such a feature allowing both transient and steady-state analyses. To motivate the actual need of marking dependency in NMSPN modeling and to demonstrate the potential of such a feature as well as the validity of the proposed solution technique a case study on a multi-core CPU system with power management facilities is explored
2017
File in questo prodotto:
File Dimensione Formato  
peva2017.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3107684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact