Marking dependency is a powerful tool that allows different firing time distributions to be associated with a stochastic Petri net transition, depending on the marking. Through this feature, the modeler can easily and compactly represent advanced properties and behaviors of the system. While a semantics and specific solution techniques have been provided for generalized stochastic Petri nets thus covering homogeneous Markovian aspects, in the non-homogeneous/non-Markovian case marking dependency still needs to be investigated. To fill this gap, this paper provides a formalization of marking dependent semantics in non-Markovian stochastic Petri nets (NMSPNs) and a solution technique, based on phase type distributions and Kronecker algebra, able to deal with such a feature allowing both transient and steady-state analyses. To motivate the actual need of marking dependency in NMSPN modeling and to demonstrate the potential of such a feature as well as the validity of the proposed solution technique a case study on a multi-core CPU system with power management facilities is explored
Marking dependency in non-Markovian stochastic Petri nets
DISTEFANO, SALVATOREPrimo
;LONGO, Francesco
Secondo
;SCARPA, Marco LucioUltimo
2017-01-01
Abstract
Marking dependency is a powerful tool that allows different firing time distributions to be associated with a stochastic Petri net transition, depending on the marking. Through this feature, the modeler can easily and compactly represent advanced properties and behaviors of the system. While a semantics and specific solution techniques have been provided for generalized stochastic Petri nets thus covering homogeneous Markovian aspects, in the non-homogeneous/non-Markovian case marking dependency still needs to be investigated. To fill this gap, this paper provides a formalization of marking dependent semantics in non-Markovian stochastic Petri nets (NMSPNs) and a solution technique, based on phase type distributions and Kronecker algebra, able to deal with such a feature allowing both transient and steady-state analyses. To motivate the actual need of marking dependency in NMSPN modeling and to demonstrate the potential of such a feature as well as the validity of the proposed solution technique a case study on a multi-core CPU system with power management facilities is exploredFile | Dimensione | Formato | |
---|---|---|---|
peva2017.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.