Zooplankton represents a key contributor to the ocean biological pump through its consumption of sinking and suspended carbon. A specific and highly sensitive method to evaluate zooplankton carbon requirement from the sinking flux is through the estimation of the activity of the electron transport system. The present study was carried out from samplings in 2006, and it was focused on the spatial 200–0 m zooplankton carbon demand across 24 sampling stations, along the Mediterranean Sea, from the island of Crete to the Strait of Gibraltar. Its potential day/night variability was evaluated. The zooplankton composition, abundance and biomass were investigated. The carbon demand per unit zooplankton biomass indicates geographical and diel differences among the sampling stations. A higher mean carbon demand was seen for the western Mediterranean with respect to the eastern Mediterranean, which can be justified through the observed ratio of gelatinous:crustacean taxa and the water temperatures recorded. Higher carbon demand was measured in samples collected during the dark hours. The relation to the presence and abundance of actively migrating euphausiids and copepods was discussed. A comparison with data from another of our study carried out in the same study area but in another seasonal period was done.
Spring and autumn spatial distribution of zooplankton carbon requirement across the Mediterranean Sea
MINUTOLI, Roberta
Primo
;ZAGAMI, GiacomoSecondo
;BRUGNANO, cinzia;GUGLIELMO, Letterio;PANSERA, marco;GRANATA, AntoniaUltimo
2017-01-01
Abstract
Zooplankton represents a key contributor to the ocean biological pump through its consumption of sinking and suspended carbon. A specific and highly sensitive method to evaluate zooplankton carbon requirement from the sinking flux is through the estimation of the activity of the electron transport system. The present study was carried out from samplings in 2006, and it was focused on the spatial 200–0 m zooplankton carbon demand across 24 sampling stations, along the Mediterranean Sea, from the island of Crete to the Strait of Gibraltar. Its potential day/night variability was evaluated. The zooplankton composition, abundance and biomass were investigated. The carbon demand per unit zooplankton biomass indicates geographical and diel differences among the sampling stations. A higher mean carbon demand was seen for the western Mediterranean with respect to the eastern Mediterranean, which can be justified through the observed ratio of gelatinous:crustacean taxa and the water temperatures recorded. Higher carbon demand was measured in samples collected during the dark hours. The relation to the presence and abundance of actively migrating euphausiids and copepods was discussed. A comparison with data from another of our study carried out in the same study area but in another seasonal period was done.File | Dimensione | Formato | |
---|---|---|---|
2017 Minutoli et al. Spring and autumn spatial distribution.pdf
solo gestori archivio
Descrizione: Versione epub
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.58 MB
Formato
Adobe PDF
|
2.58 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Spring and autumn spatial distribution of zooplankton carbon requirement across the Mediterranean Sea.pdf
solo utenti autorizzati
Descrizione: Versione a stampa
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
5.71 MB
Formato
Adobe PDF
|
5.71 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.