We study a one-dimensional p-Laplacian resonant problem with p-sublinear terms and depending on a positive parameter. By using quadrature methods we provide the exact number of positive solutions with respect to mu is an element of ]0,+infinity[. Specifically, we prove the existence of a critical value mu(1) > 0 such that the problem under examination admits: no positive solutions and a continuum of nonnegative solutions compactly supported in [0, 1] for mu is an element of ]0,mu(1)[; a unique positive solution of compacton-type for mu = mu(1) a unique positive solution satisfying Hopf's boundary condition for mu is an element of]mu(1),+infinity[.

Uniqueness of positive and compacton-type solutions for a resonant quasilinear problem

ANELLO, Giovanni;VILASI, LUCA
2017-01-01

Abstract

We study a one-dimensional p-Laplacian resonant problem with p-sublinear terms and depending on a positive parameter. By using quadrature methods we provide the exact number of positive solutions with respect to mu is an element of ]0,+infinity[. Specifically, we prove the existence of a critical value mu(1) > 0 such that the problem under examination admits: no positive solutions and a continuum of nonnegative solutions compactly supported in [0, 1] for mu is an element of ]0,mu(1)[; a unique positive solution of compacton-type for mu = mu(1) a unique positive solution satisfying Hopf's boundary condition for mu is an element of]mu(1),+infinity[.
2017
File in questo prodotto:
File Dimensione Formato  
anello-vilasi 2017.pdf

solo gestori archivio

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 413.79 kB
Formato Adobe PDF
413.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3111907
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact