Over the past decades, Sicily has undergone an increasing sequence of extreme weather events that have produced, besides huge damages to both environment and territory, the death of hundreds of people together with the evacuation of thousands of residents, which have permanently lost their properties. In this framework, with this paper we have investigated the impact of different grid spacing and geographic data on the performance of forecasts over complex orographic areas. In order to test the validity of this approach we have analyzed and discussed, as case study, the heavy rainfall occurred in Sicily during the night of October 10, 2015. In just 9 h, a Mediterranean depression, centered on the Tunisian coastline, produced a violent mesoscale storm localized on the Peloritani Mountains with a maximum rain accumulation of about 200 mm. The results of these simulations were obtained using the Weather Research and Forecasting (WRF-ARW) Model, version 3.7.1, at different grid spacing values and the Two Way Nesting procedure with a sub-domain centered on the area of interest. The results highlighted that providing correct and timely forecasts of extreme weather events is a challenge that could have been efficiently and effectively countered using proper employment of high spatial resolution models.

Weather forecast performances for complex orographic areas: Impact of different grid resolutions and of geographic data on heavy rainfall event simulations in Sicily

CACCAMO, MARIA TERESA
Primo
;
CASTORINA, GIUSEPPE
Secondo
;
Colombo, Franco;Magazù¹, S.
Ultimo
2017-01-01

Abstract

Over the past decades, Sicily has undergone an increasing sequence of extreme weather events that have produced, besides huge damages to both environment and territory, the death of hundreds of people together with the evacuation of thousands of residents, which have permanently lost their properties. In this framework, with this paper we have investigated the impact of different grid spacing and geographic data on the performance of forecasts over complex orographic areas. In order to test the validity of this approach we have analyzed and discussed, as case study, the heavy rainfall occurred in Sicily during the night of October 10, 2015. In just 9 h, a Mediterranean depression, centered on the Tunisian coastline, produced a violent mesoscale storm localized on the Peloritani Mountains with a maximum rain accumulation of about 200 mm. The results of these simulations were obtained using the Weather Research and Forecasting (WRF-ARW) Model, version 3.7.1, at different grid spacing values and the Two Way Nesting procedure with a sub-domain centered on the area of interest. The results highlighted that providing correct and timely forecasts of extreme weather events is a challenge that could have been efficiently and effectively countered using proper employment of high spatial resolution models.
2017
File in questo prodotto:
File Dimensione Formato  
17_Atmospheric_Research_2017.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.88 MB
Formato Adobe PDF
2.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3112242
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 26
social impact