Our knowledge of extracellular matrix (ECM) structure and function has increased enormously over the last decade or so. There is evidence demonstrating that ECM provides signals affecting cell adhesion, shape, migration, proliferation, survival, and differentiation. ECM presents many domains that become active after proteolytic cleavage. These active ECM fragments are called matrikines which play different roles; in particular, they may act as potent inflammatory mediators during cartilage injury. FINDINGS: A major component of the ECM that undergoes dynamic regulation during cartilage damage and inflammation is the non-sulphated glycosaminoglycan (GAG) hyaluronan (HA). In this contest, HA is the most studied because of its different activity due to the different polymerization state. In vivo evidences have shown that low molecular weight HA exerts pro-inflammatory action, while high molecular weight HA possesses anti-inflammatory properties. Therefore, the beneficial HA effects on arthritis are not only limited to its viscosity and lubricant action on the joints, but it is especially due to a specific and effective anti-inflammatory activity. Several in vitro experimental investigations demonstrated that HA treatment may regulate different biochemical pathways involved during the cartilage damage. Emerging reports are suggesting that the ability to recognize receptors both for the HA degraded fragments, whether for the high-polymerized native HA involve interaction with integrins, toll-like receptors (TLRs), and the cluster determinant (CD44). The activation of these receptors induced by small HA fragments, via the nuclear factor kappa-light-chain enhancer of activated B cell (NF-kB) mediation, directly or other different pathways, produces the transcription of a large number of damaging intermediates that lead to cartilage erosion. CONCLUSIONS: This review briefly summarizes a number of findings of the recent studies focused on the protective effects of HA, at the different polymerization states, on experimental arthritis in vitro both in animal and human cultured chondrocytes.

Hyaluronan in the experimental injury of the cartilage: biochemical action and protective effects

AVENOSO, Angela
Co-primo
;
D'ascola, Angela
Co-primo
;
SCURUCHI, MICHELE;MANDRAFFINO, GIUSEPPE;CALATRONI, Alberto;SAITTA, Antonino;CAMPO, Salvatore Giuseppe
Penultimo
;
CAMPO, Giuseppe Maurizio
Ultimo
2018-01-01

Abstract

Our knowledge of extracellular matrix (ECM) structure and function has increased enormously over the last decade or so. There is evidence demonstrating that ECM provides signals affecting cell adhesion, shape, migration, proliferation, survival, and differentiation. ECM presents many domains that become active after proteolytic cleavage. These active ECM fragments are called matrikines which play different roles; in particular, they may act as potent inflammatory mediators during cartilage injury. FINDINGS: A major component of the ECM that undergoes dynamic regulation during cartilage damage and inflammation is the non-sulphated glycosaminoglycan (GAG) hyaluronan (HA). In this contest, HA is the most studied because of its different activity due to the different polymerization state. In vivo evidences have shown that low molecular weight HA exerts pro-inflammatory action, while high molecular weight HA possesses anti-inflammatory properties. Therefore, the beneficial HA effects on arthritis are not only limited to its viscosity and lubricant action on the joints, but it is especially due to a specific and effective anti-inflammatory activity. Several in vitro experimental investigations demonstrated that HA treatment may regulate different biochemical pathways involved during the cartilage damage. Emerging reports are suggesting that the ability to recognize receptors both for the HA degraded fragments, whether for the high-polymerized native HA involve interaction with integrins, toll-like receptors (TLRs), and the cluster determinant (CD44). The activation of these receptors induced by small HA fragments, via the nuclear factor kappa-light-chain enhancer of activated B cell (NF-kB) mediation, directly or other different pathways, produces the transcription of a large number of damaging intermediates that lead to cartilage erosion. CONCLUSIONS: This review briefly summarizes a number of findings of the recent studies focused on the protective effects of HA, at the different polymerization states, on experimental arthritis in vitro both in animal and human cultured chondrocytes.
2018
File in questo prodotto:
File Dimensione Formato  
3112539.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3112539
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact