Electrochemical dissolution of metallic copper into slightly acidic aqueous solutions of chitosan yields a clear and stable dispersion of Copper Oxide nanoparticles into the organic polymer host. The electrochemically synthesized chitosan:CuOx nanocomposite is characterized by means of spectrophotometry, frequency domain electrical measurements and morphological analysis. Solid state electrochemical cells having pure chitosan as the electrolyte and using chitosan:CuOx as the electrode, are developed and characterized by means of electrical measurements performed in the ±1 V voltage window. The current-voltage loops of the cells, measured in deionized water, are found to reversibly change in response to hydrogen peroxide added to the water in 0.2 μM subsequent steps. Such changes, clearly distinguishable from changes recorded in response to other analytes, can be exploited in order to develop a hydrogen peroxide sensor able to work without the need for any supporting electrolyte.
Copper oxide chitosan nanocomposite: Characterization and application in non-enzymatic hydrogen peroxide sensing
Arena, Antonella
Primo
;Scandurra, GraziellaSecondo
;Ciofi, CarmineUltimo
2017-01-01
Abstract
Electrochemical dissolution of metallic copper into slightly acidic aqueous solutions of chitosan yields a clear and stable dispersion of Copper Oxide nanoparticles into the organic polymer host. The electrochemically synthesized chitosan:CuOx nanocomposite is characterized by means of spectrophotometry, frequency domain electrical measurements and morphological analysis. Solid state electrochemical cells having pure chitosan as the electrolyte and using chitosan:CuOx as the electrode, are developed and characterized by means of electrical measurements performed in the ±1 V voltage window. The current-voltage loops of the cells, measured in deionized water, are found to reversibly change in response to hydrogen peroxide added to the water in 0.2 μM subsequent steps. Such changes, clearly distinguishable from changes recorded in response to other analytes, can be exploited in order to develop a hydrogen peroxide sensor able to work without the need for any supporting electrolyte.File | Dimensione | Formato | |
---|---|---|---|
sensors-17-02198.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4 MB
Formato
Adobe PDF
|
4 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.