Parkinson's disease (PD) is a disorder caused by degeneration of dopaminergic neurons. At the moment, there is no cure. Recent studies have shown that autophagy may have a protective function against the advance of a number of neurodegenerative diseases. Temsirolimus is an analogue of rapamycin that induces autophagy by inhibiting mammalian target of rapamycin complex 1. For this purpose, in the present study we investigated the neuroprotective effects of temsirolimus (5 mg/kg intraperitoneal) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced (MPTP) neurotoxicity in in vivo model of PD. At the end of the experiment, brain tissues were processed for histological, immunohistochemical, Western blot, and immunofluorescent analysis. Treatment with temsirolimus significantly ameliorated behavioral deficits, increased the expression of specific markers of PD such as tyrosine hydroxylase, dopamine transporter, as well as decreased the upregulation of alpha-synuclein in the substantia nigra after MPTP induction. Furthermore, Western blot and immunohistochemistry analysis showed that temsirolimus administration significantly increased autophagy process. In fact, treatment with temsirolimus maintained high Beclin-1, p62, and microtubule-associated protein 1A/1B-light chain 3 expression and inhibited the p70S6K expression. In addition, we showed that temsirolimus has also anti-inflammatory properties as assessed by the significant inhibition of the expression of mitogen-activated protein kinases such as p-JNK, p-p38, and p-ERK, and the restored levels of neurotrophic factor expression such as BDNF and NT-3. On the basis of this evidence, we clearly demonstrate that temsirolimus is able to modulate both the autophagic process and the neuroinflammatory pathway involved in PD, actions which may underlie its neuroprotective effect.
Neuroprotective Effects of Temsirolimus in Animal Models of Parkinson's Disease
Siracusa, RosalbaPrimo
;Paterniti, IreneSecondo
;Cordaro, Marika;Crupi, Rosalia;Campolo, Michela;Cuzzocrea, SalvatorePenultimo
;Esposito, Emanuela
Ultimo
2017-01-01
Abstract
Parkinson's disease (PD) is a disorder caused by degeneration of dopaminergic neurons. At the moment, there is no cure. Recent studies have shown that autophagy may have a protective function against the advance of a number of neurodegenerative diseases. Temsirolimus is an analogue of rapamycin that induces autophagy by inhibiting mammalian target of rapamycin complex 1. For this purpose, in the present study we investigated the neuroprotective effects of temsirolimus (5 mg/kg intraperitoneal) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced (MPTP) neurotoxicity in in vivo model of PD. At the end of the experiment, brain tissues were processed for histological, immunohistochemical, Western blot, and immunofluorescent analysis. Treatment with temsirolimus significantly ameliorated behavioral deficits, increased the expression of specific markers of PD such as tyrosine hydroxylase, dopamine transporter, as well as decreased the upregulation of alpha-synuclein in the substantia nigra after MPTP induction. Furthermore, Western blot and immunohistochemistry analysis showed that temsirolimus administration significantly increased autophagy process. In fact, treatment with temsirolimus maintained high Beclin-1, p62, and microtubule-associated protein 1A/1B-light chain 3 expression and inhibited the p70S6K expression. In addition, we showed that temsirolimus has also anti-inflammatory properties as assessed by the significant inhibition of the expression of mitogen-activated protein kinases such as p-JNK, p-p38, and p-ERK, and the restored levels of neurotrophic factor expression such as BDNF and NT-3. On the basis of this evidence, we clearly demonstrate that temsirolimus is able to modulate both the autophagic process and the neuroinflammatory pathway involved in PD, actions which may underlie its neuroprotective effect.File | Dimensione | Formato | |
---|---|---|---|
3115846.pdf
accesso aperto
Descrizione: Neuroprotective Effects of Temsirolimus in Animal Models of Parkinson’s Disease
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
8.06 MB
Formato
Adobe PDF
|
8.06 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.