In this work, we propose a fractional complex permittivity model of dielectric media with memory. Debye’s generalized equation, expressed in terms of the phenomenological coefficients, is replaced with the corresponding differential equation by applying Caputo’s fractional derivative. We observe how fractional order depends on the frequency band of excitation energy in accordance with the 2nd Principle of Thermodynamics. The model obtained is validated with respect to the measurements made on the biological tissues and in particular on the human aorta.

A fractional complex permittivity model of media with dielectric relaxation.

Armando Ciancio
Membro del Collaboration Group
;
2017-01-01

Abstract

In this work, we propose a fractional complex permittivity model of dielectric media with memory. Debye’s generalized equation, expressed in terms of the phenomenological coefficients, is replaced with the corresponding differential equation by applying Caputo’s fractional derivative. We observe how fractional order depends on the frequency band of excitation energy in accordance with the 2nd Principle of Thermodynamics. The model obtained is validated with respect to the measurements made on the biological tissues and in particular on the human aorta.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3117722
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact