Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are recommended components of preferred combination antiretroviral therapies used for the treatment of human immunodeficiency virus (HIV) infection. These regimens are extremely effective in suppressing virus replication. Recently, our research group identified some N-1-aryl-2-arylthioacetamido-benzimidazoles as a novel class of NNRTIs. In this research work we report the design, the synthesis and the structure-activity relationship studies of new compounds (20-34) in which some structural modifications have been introduced in order to investigate their effects on reverse transcriptase (RT) inhibition and to better define the features needed to increase the antiviral activity. Most of the new compounds proved to be highly effective in inhibiting both RT enzyme at nanomolar concentrations and HIV-1 replication in MT4 cells with minimal cytotoxicity. Among them, the most promising N-1-aryl-2-arylthioacetamido-benzimidazoles and N-1-aryl-2-aryloxyacetamido-benzimidazoles were also tested toward a panel of single-and double-mutants strain responsible for resistance to NNRTIs, showing in vitro antiviral activity toward single mutants L100I, K103N, Y181C, Y188L and E138K. The best results were observed for derivatives 29 and 33 active also against the double mutants F227L and V106A. Computational approaches were applied in order to rationalize the potency of the new synthesized inhibitors.

Structural optimization of N1-aryl-benzimidazoles for the discovery of new non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains

Monforte, Anna Maria
Primo
;
De Luca, Laura
Secondo
;
Buemi, Maria Rosa;Agharbaoui, Fatima E.;Ferro, Stefania
Ultimo
2018-01-01

Abstract

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are recommended components of preferred combination antiretroviral therapies used for the treatment of human immunodeficiency virus (HIV) infection. These regimens are extremely effective in suppressing virus replication. Recently, our research group identified some N-1-aryl-2-arylthioacetamido-benzimidazoles as a novel class of NNRTIs. In this research work we report the design, the synthesis and the structure-activity relationship studies of new compounds (20-34) in which some structural modifications have been introduced in order to investigate their effects on reverse transcriptase (RT) inhibition and to better define the features needed to increase the antiviral activity. Most of the new compounds proved to be highly effective in inhibiting both RT enzyme at nanomolar concentrations and HIV-1 replication in MT4 cells with minimal cytotoxicity. Among them, the most promising N-1-aryl-2-arylthioacetamido-benzimidazoles and N-1-aryl-2-aryloxyacetamido-benzimidazoles were also tested toward a panel of single-and double-mutants strain responsible for resistance to NNRTIs, showing in vitro antiviral activity toward single mutants L100I, K103N, Y181C, Y188L and E138K. The best results were observed for derivatives 29 and 33 active also against the double mutants F227L and V106A. Computational approaches were applied in order to rationalize the potency of the new synthesized inhibitors.
2018
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0968089617320424-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.36 MB
Formato Adobe PDF
3.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3119472
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact