The availability of a resource collecting dose factors for the evaluation of the absorbed doses from external exposure during the manipulation of radioactive substances is fundamental for radiological protection purposes. Monte Carlo simulations are useful for the accurate calculation of dose distributions in complex geometries, particularly in presence of extended spectra of multi-radiation sources. We considered, as possible irradiation scenarios, a point source, a uniform planar source resembling a contaminated surface, several source volumes contained in plastic or glass receptacles, and the direct skin contamination case, implementing the corresponding Monte Carlo simulations in GAMOS (GEANT4-based Architecture for Medicine-Oriented Simulations). A set of 50 radionuclides was studied, focusing the attention on those ones mainly used in nuclear medicine, both for diagnostic and therapeutic purposes, in nuclear physics laboratories and for instrument calibration. Skin dose equivalents at 70 μm of depth and deep dose equivalents at 10 mm of depth are reported for different config- urations and organized in easy-to-read tables.

Radiation protection from external exposure to radionuclides: A Monte Carlo data handbook

Amato, Ernesto;Italiano, Antonio;Auditore, Lucrezia;Baldari, Sergio
2018-01-01

Abstract

The availability of a resource collecting dose factors for the evaluation of the absorbed doses from external exposure during the manipulation of radioactive substances is fundamental for radiological protection purposes. Monte Carlo simulations are useful for the accurate calculation of dose distributions in complex geometries, particularly in presence of extended spectra of multi-radiation sources. We considered, as possible irradiation scenarios, a point source, a uniform planar source resembling a contaminated surface, several source volumes contained in plastic or glass receptacles, and the direct skin contamination case, implementing the corresponding Monte Carlo simulations in GAMOS (GEANT4-based Architecture for Medicine-Oriented Simulations). A set of 50 radionuclides was studied, focusing the attention on those ones mainly used in nuclear medicine, both for diagnostic and therapeutic purposes, in nuclear physics laboratories and for instrument calibration. Skin dose equivalents at 70 μm of depth and deep dose equivalents at 10 mm of depth are reported for different config- urations and organized in easy-to-read tables.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3119727
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact