In this paper, a spiking neural network–based architecture for the prediction of wind farm energy production is proposed. The model is also able to evaluate the wake effects due to interactions between the elements of a wind farm on the energy production of the whole farm. This method has been applied to a large wind power plant, composed of 28 turbines and 3 anemometric towers, located in the rural area of Vizzini's municipality in province of Catania, Italy, that is characterised by a complex orography and an extension of 30 km2. For the implementation of this architecture it was used the “NeuCube” simulator. The results show that the presented method can be successfully applied for predictions of wind energy generation in real wind farm also in presence of faults.

A new design methodology to predict wind farm energy production by means of a spiking neural network–based system

Sebastian Brusca
Writing – Original Draft Preparation
;
2019-01-01

Abstract

In this paper, a spiking neural network–based architecture for the prediction of wind farm energy production is proposed. The model is also able to evaluate the wake effects due to interactions between the elements of a wind farm on the energy production of the whole farm. This method has been applied to a large wind power plant, composed of 28 turbines and 3 anemometric towers, located in the rural area of Vizzini's municipality in province of Catania, Italy, that is characterised by a complex orography and an extension of 30 km2. For the implementation of this architecture it was used the “NeuCube” simulator. The results show that the presented method can be successfully applied for predictions of wind energy generation in real wind farm also in presence of faults.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3120160
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 18
social impact