The behaviour of photoanodes based on TiO2 nanotubes (TNTs) grown on Ti gauze (80 mesh) by controlled anodic oxidation was studied in a compact photo-electrocatalytic (PECa) device for H2 production by water photo-electrolysis. The 3D-type structured TNTs-Ti meshes evidenced: i) a mesoporosity due to the presence of highly ordered TiO2 nanotube arrays grown on the round surface of the regularly woven wires of the Ti gauze and ii) a macroporosity due to the open area (36%) of the mesh. The resulting hierarchical porous 3D structure allowed the TNTs-Ti meshes to act both as photoactive materials for efficient light absorption and as porous substrates for fast mass diffusion of protons. The synthesis of TNTs was investigated by varying the applied voltage (in the range 40–60 V) and the anodization time (from 20 min to 7 h). Results showed that two main opposite aspects influenced their performances in the PECa cell: i) the inner diameter and ii) the length of TNTs. While the increase of the inner diameter with the anodization time should favour H2 productivity, longer nanotubes negatively influence the catalytic activity due to increasing charge recombination phenomena. The result is an initial decreasing profile of H2 evolution vs. anodization time, reaching a minimum at 3 h and then increasing again for the 5 h-anodized sample (H2 production rate: 1.4 L m−2 h−1). The maximum photoconversion efficiency (0.7%) was obtained, instead, for the 20 min-anodized sample. It is to remark that tests of water splitting were performed with no applied bias and without adding sacrificial donors, opening the route for a sustainable use of these 3D-type meso/macro porous structured photoanodes in the production of solar fuels.
Water splitting on 3D-type meso/macro porous structured photoanodes based on Ti mesh
Tavella FSecondo
;Ampelli C
;Perathoner S;Genovese C;Marepally BC;Centi GUltimo
2018-01-01
Abstract
The behaviour of photoanodes based on TiO2 nanotubes (TNTs) grown on Ti gauze (80 mesh) by controlled anodic oxidation was studied in a compact photo-electrocatalytic (PECa) device for H2 production by water photo-electrolysis. The 3D-type structured TNTs-Ti meshes evidenced: i) a mesoporosity due to the presence of highly ordered TiO2 nanotube arrays grown on the round surface of the regularly woven wires of the Ti gauze and ii) a macroporosity due to the open area (36%) of the mesh. The resulting hierarchical porous 3D structure allowed the TNTs-Ti meshes to act both as photoactive materials for efficient light absorption and as porous substrates for fast mass diffusion of protons. The synthesis of TNTs was investigated by varying the applied voltage (in the range 40–60 V) and the anodization time (from 20 min to 7 h). Results showed that two main opposite aspects influenced their performances in the PECa cell: i) the inner diameter and ii) the length of TNTs. While the increase of the inner diameter with the anodization time should favour H2 productivity, longer nanotubes negatively influence the catalytic activity due to increasing charge recombination phenomena. The result is an initial decreasing profile of H2 evolution vs. anodization time, reaching a minimum at 3 h and then increasing again for the 5 h-anodized sample (H2 production rate: 1.4 L m−2 h−1). The maximum photoconversion efficiency (0.7%) was obtained, instead, for the 20 min-anodized sample. It is to remark that tests of water splitting were performed with no applied bias and without adding sacrificial donors, opening the route for a sustainable use of these 3D-type meso/macro porous structured photoanodes in the production of solar fuels.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0927024818300072-main.pdf
solo utenti autorizzati
Descrizione: manuscript
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
701.63 kB
Formato
Adobe PDF
|
701.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1-s2.0-S0927024818300072-mmc1.pdf
solo utenti autorizzati
Descrizione: supporting information
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
585.51 kB
Formato
Adobe PDF
|
585.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.