In this paper, interval fractional derivatives are presented. We consider uncertainty in both the order and the argument of the fractional operator. The approach proposed takes advantage of the property of Fourier and Laplace transforms with respect to the translation operator, in order to first define integral transform of interval functions. Subsequently, the main interval fractional integrals and derivatives, such as the Riemann-Liouville, Caputo, and Riesz, are defined based on their properties with respect to integral transforms. Moreover, uncertain-but-bounded linear fractional dynamical systems, relevant in modeling fractional viscoelasticity, excited by zero-mean stationary Gaussian forces are considered. Within the interval analysis framework, either exact or approximate bounds of the variance of the stationary response are proposed, in case of interval stiffness or interval fractional damping, respectively.

Fractional Derivatives in Interval Analysis

Santoro, Roberta
Ultimo
2017-01-01

Abstract

In this paper, interval fractional derivatives are presented. We consider uncertainty in both the order and the argument of the fractional operator. The approach proposed takes advantage of the property of Fourier and Laplace transforms with respect to the translation operator, in order to first define integral transform of interval functions. Subsequently, the main interval fractional integrals and derivatives, such as the Riemann-Liouville, Caputo, and Riesz, are defined based on their properties with respect to integral transforms. Moreover, uncertain-but-bounded linear fractional dynamical systems, relevant in modeling fractional viscoelasticity, excited by zero-mean stationary Gaussian forces are considered. Within the interval analysis framework, either exact or approximate bounds of the variance of the stationary response are proposed, in case of interval stiffness or interval fractional damping, respectively.
2017
File in questo prodotto:
File Dimensione Formato  
Cottone_Santoro_RISK_ASCE_ASME2017.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 608.91 kB
Formato Adobe PDF
608.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3121177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact