Autism spectrum disorder (ASD) is a severe, complex neurodevelopmental disorder characterized by impairments in reciprocal social interaction and communication, and restricted and stereotyped patterns of interests and behaviors. Recent evidence has unveiled an important role for calcium (Ca2+) signaling in the pathogenesis of ASD. Postmortem studies of autistic brains have pointed toward abnormalities in mitochondrial function as possible downstream consequences of altered Ca2+ signaling, abnormal synapse formation, and dysreactive immunity. SLC25A12, an ASD susceptibility gene, encodes the Ca2+-regulated mitochondrial aspartate–glutamate carrier, isoform 1 (AGC1). AGC1 is an important component of the malate/aspartate shuttle, a crucial system supporting oxidative phosphorylation and adenosine triphosphate (ATP) production. Here, we review the physiological roles of AGC1, its links to calcium homeostasis, and its involvement in autism pathogenesis.
The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: Physiological links and abnormalities in autism
Persico, Antonio M.
;
2011-01-01
Abstract
Autism spectrum disorder (ASD) is a severe, complex neurodevelopmental disorder characterized by impairments in reciprocal social interaction and communication, and restricted and stereotyped patterns of interests and behaviors. Recent evidence has unveiled an important role for calcium (Ca2+) signaling in the pathogenesis of ASD. Postmortem studies of autistic brains have pointed toward abnormalities in mitochondrial function as possible downstream consequences of altered Ca2+ signaling, abnormal synapse formation, and dysreactive immunity. SLC25A12, an ASD susceptibility gene, encodes the Ca2+-regulated mitochondrial aspartate–glutamate carrier, isoform 1 (AGC1). AGC1 is an important component of the malate/aspartate shuttle, a crucial system supporting oxidative phosphorylation and adenosine triphosphate (ATP) production. Here, we review the physiological roles of AGC1, its links to calcium homeostasis, and its involvement in autism pathogenesis.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.