Acute exercise is known to induce oxidative stress. Here we assessed the effects of gene polymorphisms SOD2 A16V, CAT −844 G>A, and GPx-1 rs1800668 C>T on oxidative stress markers in 28 elite water polo male players prior to and after a routinely programmed friendly match. The mean plasma concentrations of derivatives of reactive oxygen metabolites (dROMs), as well as lactic dehydrogenase (LDH) activity, creatine kinase (CK) activity, CK-MB, and myoglobin, were significantly increased after exercise, while blood antioxidant potential (BAP) and total free thiols were significantly decreased, compared with those measured before exercise. Advanced oxidation protein products (AOPP) were also increased after exercise but not significantly. We observed that water polo players having either AV16 or VV16 SOD genotype exhibited a significant increase of postexercise AOPP, LDH, CK, and myoglobin plasma levels in comparison with wild-type athletes. Water polo players having either CAT −844 GA or GPx1 CT genotype showed a significant increase of postexercise dROMs plasma levels and, respectively, GPx and CAT enzyme activities in comparison with wild-type subjects. These preliminary results suggest that the screening for gene variants of antioxidant enzymes could be useful to assess individual susceptibility to oxidative stress and muscle damage in water polo players.

The Oxidative Stress Response in Elite Water Polo Players: Effects of Genetic Background.

Monica Currò;Fabio Trimarchi;Daniela Caccamo
;
Riccardo Ientile;Davide Barreca;Debora Di Mauro
Ultimo
2017-01-01

Abstract

Acute exercise is known to induce oxidative stress. Here we assessed the effects of gene polymorphisms SOD2 A16V, CAT −844 G>A, and GPx-1 rs1800668 C>T on oxidative stress markers in 28 elite water polo male players prior to and after a routinely programmed friendly match. The mean plasma concentrations of derivatives of reactive oxygen metabolites (dROMs), as well as lactic dehydrogenase (LDH) activity, creatine kinase (CK) activity, CK-MB, and myoglobin, were significantly increased after exercise, while blood antioxidant potential (BAP) and total free thiols were significantly decreased, compared with those measured before exercise. Advanced oxidation protein products (AOPP) were also increased after exercise but not significantly. We observed that water polo players having either AV16 or VV16 SOD genotype exhibited a significant increase of postexercise AOPP, LDH, CK, and myoglobin plasma levels in comparison with wild-type athletes. Water polo players having either CAT −844 GA or GPx1 CT genotype showed a significant increase of postexercise dROMs plasma levels and, respectively, GPx and CAT enzyme activities in comparison with wild-type subjects. These preliminary results suggest that the screening for gene variants of antioxidant enzymes could be useful to assess individual susceptibility to oxidative stress and muscle damage in water polo players.
2017
File in questo prodotto:
File Dimensione Formato  
The Oxidative Stress Response in Elite Water Polo Players Effects of Genetic Background.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3122014
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact