Since the first report of graphene, thin two-dimensional (2D) nanomaterials with atomic or molecular thicknesses have attracted great research interest for gas sensing applications. This was due to the distinctive physical, chemical, and electronic properties related to their ultrathin thickness, which positively affect the gas sensing performances. This feature article discusses the latest developments in this field, focusing on the properties, preparation, and sensing applications of thin 2D inorganic nanomaterials such as single- or few-layer layered double hydroxides/transition metal oxides/transition metal dichalcogenides. Recent studies have shown that thin 2D inorganic nanomaterials could provide monitoring of harmful/toxic gases with high sensitivity and a low concentration detection limit by means of conductometric sensors operating at relatively low working temperatures. Promisingly, by using these thin 2D inorganic nanomaterials, it may open a simple way of improving the sensing capabilities of conductometric gas sensors.

Thin 2D: The New Dimensionality in Gas Sensing

Neri, Giovanni
2017-01-01

Abstract

Since the first report of graphene, thin two-dimensional (2D) nanomaterials with atomic or molecular thicknesses have attracted great research interest for gas sensing applications. This was due to the distinctive physical, chemical, and electronic properties related to their ultrathin thickness, which positively affect the gas sensing performances. This feature article discusses the latest developments in this field, focusing on the properties, preparation, and sensing applications of thin 2D inorganic nanomaterials such as single- or few-layer layered double hydroxides/transition metal oxides/transition metal dichalcogenides. Recent studies have shown that thin 2D inorganic nanomaterials could provide monitoring of harmful/toxic gases with high sensitivity and a low concentration detection limit by means of conductometric sensors operating at relatively low working temperatures. Promisingly, by using these thin 2D inorganic nanomaterials, it may open a simple way of improving the sensing capabilities of conductometric gas sensors.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3122029
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 101
  • ???jsp.display-item.citation.isi??? 92
social impact