Let Syz_1(m) be the first syzygy of the graded maximal ideal m of a polynomial ring K[x_1, . . . , x_n] over a field K. The multiplicity and (Castelnuovo–Mumford) regularity of the symmetric algebra Sym(Syz_1(m)) are estimated by using the theory of s-sequences. It is proved that the multiplicity of Sym(Syz_1(m)) is 1 when n ≥ 5, and n − 2 is an upper bound for its regularity. In virtue of Gröbner bases, this bound is shown to be reached provided n ≤ 5.
On invariants of certain symmetric algebras
Restuccia, GaetanaMembro del Collaboration Group
;Tang, Zhongming
Membro del Collaboration Group
;Utano, RosannaMembro del Collaboration Group
2018-01-01
Abstract
Let Syz_1(m) be the first syzygy of the graded maximal ideal m of a polynomial ring K[x_1, . . . , x_n] over a field K. The multiplicity and (Castelnuovo–Mumford) regularity of the symmetric algebra Sym(Syz_1(m)) are estimated by using the theory of s-sequences. It is proved that the multiplicity of Sym(Syz_1(m)) is 1 when n ≥ 5, and n − 2 is an upper bound for its regularity. In virtue of Gröbner bases, this bound is shown to be reached provided n ≤ 5.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Restuccia_Tang_Utano_2018_2.pdf
solo utenti autorizzati
Descrizione: Articolo
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
275.51 kB
Formato
Adobe PDF
|
275.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
3126713.pdf
solo utenti autorizzati
Descrizione: ARTICOLO PRINCIPALE
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
802.99 kB
Formato
Adobe PDF
|
802.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.