The present study investigates steam gasification kinetics of chars from six agro-industrial biomass residues (citrus pomace, grape pomace, reed, olive pomace, reed lignin and straw lignin). Experiments were performed in a TGA in steam/N2 mixtures at different temperatures and steam partial pressures. Kinetic parameters are determined by fitting computed char conversions to experimental char conversions. The conversions curves are computed using recently suggested models which are selected based on the K/(Si + P) ratio. The objective of the study is threefold: (1) to determine kinetic parameters for agricultural biomass chars, (2) to validate the models and (3) to test whether a unified activation energy can be used to predict the char gasification times. The activation energies varied between 135 and 165 kJ/mol, and the reaction orders with respect to steam varied between 0.4 and 1.0 for the investigated chars. By using a unified activation energy of 150 kJ/mol for all of the chars, computed char gasification times were in good agreement to experimental measurements. The results support recommendations that the choice of kinetic models should be based on the K/(Si + P) ratio of the chars. The introduction of an Avrami-Erofeev model allowed predicting the conversion behavior of the chars that showed sigmoidal conversion.

Energy conversion of agricultural biomass char: Steam gasification kinetics

Prestipino, M.
Primo
;
Galvagno, A.
Secondo
;
2018-01-01

Abstract

The present study investigates steam gasification kinetics of chars from six agro-industrial biomass residues (citrus pomace, grape pomace, reed, olive pomace, reed lignin and straw lignin). Experiments were performed in a TGA in steam/N2 mixtures at different temperatures and steam partial pressures. Kinetic parameters are determined by fitting computed char conversions to experimental char conversions. The conversions curves are computed using recently suggested models which are selected based on the K/(Si + P) ratio. The objective of the study is threefold: (1) to determine kinetic parameters for agricultural biomass chars, (2) to validate the models and (3) to test whether a unified activation energy can be used to predict the char gasification times. The activation energies varied between 135 and 165 kJ/mol, and the reaction orders with respect to steam varied between 0.4 and 1.0 for the investigated chars. By using a unified activation energy of 150 kJ/mol for all of the chars, computed char gasification times were in good agreement to experimental measurements. The results support recommendations that the choice of kinetic models should be based on the K/(Si + P) ratio of the chars. The introduction of an Avrami-Erofeev model allowed predicting the conversion behavior of the chars that showed sigmoidal conversion.
2018
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0360544218315020-main.pdf

solo gestori archivio

Descrizione: Paper
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
11570-3128177.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3128177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 44
social impact