The objective of the present investigation was to evaluate how dental implant positioning can influence the masticatory stress distribution over screwed mandibular prosthodontics restoration and over the surrounding bone tissue. Moreover, the dental implant components and overdenture bar strengths under masticatory cycles have been investigated in order to evaluate possible screw and prosthesis breakage. A "virtual jaw" model and 3D dental implant were reproduced to realise finite element analysis in order to underline the parameters and the mechanical characteristics of the bone and of the dental implants connected to the overdenture bar. The distribution of a nonspecific chewing phase, analysing the overall load on the fixtures of the lower jaw, was performed. The study investigating frontal and horizontal planes and vertical directions of occlusal forces showed how position and perspective of fixtures strongly influenced the stress distribution and the consequent jawbone tissue remodelling. Prostheses elements such as cantilever, passing screws, and dental implants are strictly related to the correct selection of dental implant position. This study suggested a virtual method to guide the surgeon in the choice of implant number, position, diameter, and length, and cantilever length and shape, and to evaluate the prospective stress distribution of chewing strengths for a correct prosthesis rehabilitation.

FEM Investigation of the Stress Distribution over Mandibular Bone Due to Screwed Overdenture Positioned on Dental Implants

Cicciù, Marco
Primo
Writing – Original Draft Preparation
;
Cervino, Gabriele
Secondo
Validation
;
Milone, Dario
Penultimo
Formal Analysis
;
Risitano, Giacomo
Ultimo
Writing – Review & Editing
2018-01-01

Abstract

The objective of the present investigation was to evaluate how dental implant positioning can influence the masticatory stress distribution over screwed mandibular prosthodontics restoration and over the surrounding bone tissue. Moreover, the dental implant components and overdenture bar strengths under masticatory cycles have been investigated in order to evaluate possible screw and prosthesis breakage. A "virtual jaw" model and 3D dental implant were reproduced to realise finite element analysis in order to underline the parameters and the mechanical characteristics of the bone and of the dental implants connected to the overdenture bar. The distribution of a nonspecific chewing phase, analysing the overall load on the fixtures of the lower jaw, was performed. The study investigating frontal and horizontal planes and vertical directions of occlusal forces showed how position and perspective of fixtures strongly influenced the stress distribution and the consequent jawbone tissue remodelling. Prostheses elements such as cantilever, passing screws, and dental implants are strictly related to the correct selection of dental implant position. This study suggested a virtual method to guide the surgeon in the choice of implant number, position, diameter, and length, and cantilever length and shape, and to evaluate the prospective stress distribution of chewing strengths for a correct prosthesis rehabilitation.
2018
File in questo prodotto:
File Dimensione Formato  
materials-11-01512.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.64 MB
Formato Adobe PDF
6.64 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3128371
Citazioni
  • ???jsp.display-item.citation.pmc??? 27
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 57
social impact