Optical tweezers, tools based on strongly focused light, enable optical trapping, manipulation, and characterization of a wide range of microscopic and nanoscopic materials. In the limiting cases of spherical particles either much smaller or much larger than the trapping wavelength, the force in optical tweezers separates into a conservative gradient force, which is proportional to the light intensity gradient and responsible for trapping, and a non-conservative scattering force, which is proportional to the light intensity and is generally detrimental for trapping, but fundamental for optical manipulation and laser cooling. For non-spherical particles or at intermediate (meso)scales, the situation is more complex and this traditional identification of gradient and scattering force is more elusive. Moreover, shape and composition can have dramatic consequences for optically trapped particle dynamics. Here, after an introduction to the theory and practice of optical forces with a focus on the role of shape and composition, we give an overview of some recent applications to biology, nanotechnology, spectroscopy, stochastic thermodynamics, critical Casimir forces, and active matter.

Optical tweezers and their applications

POLIMENO, PAOLO;Magazzù, Alessandro;Iatì, Maria Antonia;PATTI, FRANCESCO;Saija, Rosalba;
2018-01-01

Abstract

Optical tweezers, tools based on strongly focused light, enable optical trapping, manipulation, and characterization of a wide range of microscopic and nanoscopic materials. In the limiting cases of spherical particles either much smaller or much larger than the trapping wavelength, the force in optical tweezers separates into a conservative gradient force, which is proportional to the light intensity gradient and responsible for trapping, and a non-conservative scattering force, which is proportional to the light intensity and is generally detrimental for trapping, but fundamental for optical manipulation and laser cooling. For non-spherical particles or at intermediate (meso)scales, the situation is more complex and this traditional identification of gradient and scattering force is more elusive. Moreover, shape and composition can have dramatic consequences for optically trapped particle dynamics. Here, after an introduction to the theory and practice of optical forces with a focus on the role of shape and composition, we give an overview of some recent applications to biology, nanotechnology, spectroscopy, stochastic thermodynamics, critical Casimir forces, and active matter.
2018
File in questo prodotto:
File Dimensione Formato  
JQSRT_2018.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.38 MB
Formato Adobe PDF
3.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3128725
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 150
  • ???jsp.display-item.citation.isi??? 128
social impact