In order to investigate the influence of metal (Me) doping in Mg(OH)2 synthesis on its thermochemical behavior, Ca2+, Co2+ and Ni2+ ions were inserted in Mg(OH)2 matrix and the resulting materials were investigated for structural, morphological and thermochemical characterization. The densification of the material accompanied by the loss in porosity significantly influenced the hydration process, diminishing the conversion percentage and the kinetics. On the other hand, it increased the volumetric stored/released heat capacity (between 400 and 725 MJ/m3), reaching almost three times the un-doped Mg(OH)2 value.

Synthesis of me doped Mg(OH)2materials for thermochemical heat storage

Elpida Piperopoulos
Primo
;
Marianna Fazio
Secondo
;
Emanuela Mastronardo
Ultimo
2018-01-01

Abstract

In order to investigate the influence of metal (Me) doping in Mg(OH)2 synthesis on its thermochemical behavior, Ca2+, Co2+ and Ni2+ ions were inserted in Mg(OH)2 matrix and the resulting materials were investigated for structural, morphological and thermochemical characterization. The densification of the material accompanied by the loss in porosity significantly influenced the hydration process, diminishing the conversion percentage and the kinetics. On the other hand, it increased the volumetric stored/released heat capacity (between 400 and 725 MJ/m3), reaching almost three times the un-doped Mg(OH)2 value.
2018
File in questo prodotto:
File Dimensione Formato  
P38.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.83 MB
Formato Adobe PDF
6.83 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3130019
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact