Human immunodeficiency virus type I (HIV-1) DNA integration is an essential step of viral replication. We have suggested recently that this stage of HIV-1 life-cycle triggers a cellular DNA damage response and requires cellular DNA repair proteins for its completion. These include DNA-PK (DNA-dependent protein kinase), ATR (ataxia telangiectasia and Rad3-related), and, at least in some circumstances, ATM (ataxia telangiectasia mutated). Host cell proteins may constitute an attractive target for anti-HIV-1 therapeutics, since development of drug resistance against compounds targeting these cellular cofactor proteins is unlikely. In this study, we show that an inhibitor of ATR and ATM kinases, caffeine, can suppress replication of infectious HIV-1 strains, and provide evidence that caffeine exerts its inhibitory effect at the integration step of the HIV-1 life-cycle. We also demonstrate that caffeine-related methylxanthines including the clinically used compound, theophylline, act at the same step of the HIV-1 life-cycle as caffeine and efficiently inhibit HIV-1 replication in primary human cells. These data reveal the feasibility of therapeutic approaches targeting host cell proteins and further support the hypothesis that ATR and ATM proteins are involved in retroviral DNA integration.

Inhibition of HIV-1 replication by caffeine and caffeine-related methylxanthines.

NUNNARI G;
2005-01-01

Abstract

Human immunodeficiency virus type I (HIV-1) DNA integration is an essential step of viral replication. We have suggested recently that this stage of HIV-1 life-cycle triggers a cellular DNA damage response and requires cellular DNA repair proteins for its completion. These include DNA-PK (DNA-dependent protein kinase), ATR (ataxia telangiectasia and Rad3-related), and, at least in some circumstances, ATM (ataxia telangiectasia mutated). Host cell proteins may constitute an attractive target for anti-HIV-1 therapeutics, since development of drug resistance against compounds targeting these cellular cofactor proteins is unlikely. In this study, we show that an inhibitor of ATR and ATM kinases, caffeine, can suppress replication of infectious HIV-1 strains, and provide evidence that caffeine exerts its inhibitory effect at the integration step of the HIV-1 life-cycle. We also demonstrate that caffeine-related methylxanthines including the clinically used compound, theophylline, act at the same step of the HIV-1 life-cycle as caffeine and efficiently inhibit HIV-1 replication in primary human cells. These data reveal the feasibility of therapeutic approaches targeting host cell proteins and further support the hypothesis that ATR and ATM proteins are involved in retroviral DNA integration.
2005
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3130452
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 55
social impact