In this paper, the development of a nanoporous TiO2 array-modified Ti electrode for photo-electrochemical (PEC) sensing of dopamine (DA) is reported. A porous TiO2 array-modified electrode was fabricated from the controlled anodic oxidation of a Ti working electrode of commercial screen-printed electrodes (SPE). The anodization process and the related morphological and microstructural transformation of the bare Ti electrode into a TiO2/Ti electrode was followed by scanning electron microscopy (SEM) and UV-visible reflectance spectroscopy (DR-UV-Vis). The modified electrode was irradiated with a low-power (120 mW) UV-Vis LED lamp (λ = 400 nm) and showed good performance for the detection of DA with a large linear response range, a sensitivity of 462 nA mM−1 cm−2, and a limit of detection of 20 µM. Moreover, it showed higher photocurrents in the presence of DA in comparison to some foreign species such as ascorbic acid, uric acid, glucose, K+, Na+, and Cl−. Thus, this proposed low-cost photo-electrochemical sensor, with the advantage of very simple fabrication, demonstrates potential applications for the determination of dopamine in real samples.
Photo-electrochemical sensing of dopamine by a novel porous TiO2 array-modified screen printed Ti electrode
Francesco TavellaPrimo
;Claudio AmpelliSecondo
;Salvatore Gianluca Leonardi;Giovanni Neri
Ultimo
2018-01-01
Abstract
In this paper, the development of a nanoporous TiO2 array-modified Ti electrode for photo-electrochemical (PEC) sensing of dopamine (DA) is reported. A porous TiO2 array-modified electrode was fabricated from the controlled anodic oxidation of a Ti working electrode of commercial screen-printed electrodes (SPE). The anodization process and the related morphological and microstructural transformation of the bare Ti electrode into a TiO2/Ti electrode was followed by scanning electron microscopy (SEM) and UV-visible reflectance spectroscopy (DR-UV-Vis). The modified electrode was irradiated with a low-power (120 mW) UV-Vis LED lamp (λ = 400 nm) and showed good performance for the detection of DA with a large linear response range, a sensitivity of 462 nA mM−1 cm−2, and a limit of detection of 20 µM. Moreover, it showed higher photocurrents in the presence of DA in comparison to some foreign species such as ascorbic acid, uric acid, glucose, K+, Na+, and Cl−. Thus, this proposed low-cost photo-electrochemical sensor, with the advantage of very simple fabrication, demonstrates potential applications for the determination of dopamine in real samples.File | Dimensione | Formato | |
---|---|---|---|
sensors-18-03566.pdf
accesso aperto
Descrizione: manuscript
Tipologia:
Versione Editoriale (PDF)
Dimensione
4.4 MB
Formato
Adobe PDF
|
4.4 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.