Operation brain trauma therapy (OBTT) is a multi-center, pre-clinical drug and biomarker screening consortium for traumatic brain injury (TBI). Therapies are screened across three rat models (parasagittal fluid percussion injury, controlled cortical impact [CCI], and penetrating ballistic-like brain injury). Operation brain trauma therapy seeks to define therapies that show efficacy across models that should have the best chance in randomized clinical trials (RCTs) and/or to define model-dependent therapeutic effects, including TBI protein biomarker responses, to guide precision medicine-based clinical trials in targeted pathologies. The results of the first five therapies tested by OBTT (nicotinamide, erythropoietin, cyclosporine [CsA], simvastatin, and levetiracetam) were published in the Journal of Neurotrauma. Operation brain trauma therapy now describes preliminary results on four additional therapies (glibenclamide, kollidon-VA64, AER-271, and amantadine). To date, levetiracetam was beneficial on cognitive outcome, histology, and/or biomarkers in two models. The second most successful drug, glibenclamide, improved motor function and histology in CCI. Other therapies showed model-dependent effects (amantadine and CsA). Critically, glial fibrillary acidic protein levels predicted treatment effects. Operation brain trauma therapy suggests that levetiracetam merits additional pre-clinical and clinical evaluation and that glibenclamide and amantadine merit testing in specific TBI phenotypes. Operation brain trauma therapy has established that rigorous, multi-center consortia could revolutionize TBI therapy and biomarker development.

Operation Brain Trauma Therapy: 2016 Update

Mondello, Stefania
Writing – Original Draft Preparation
;
2018-01-01

Abstract

Operation brain trauma therapy (OBTT) is a multi-center, pre-clinical drug and biomarker screening consortium for traumatic brain injury (TBI). Therapies are screened across three rat models (parasagittal fluid percussion injury, controlled cortical impact [CCI], and penetrating ballistic-like brain injury). Operation brain trauma therapy seeks to define therapies that show efficacy across models that should have the best chance in randomized clinical trials (RCTs) and/or to define model-dependent therapeutic effects, including TBI protein biomarker responses, to guide precision medicine-based clinical trials in targeted pathologies. The results of the first five therapies tested by OBTT (nicotinamide, erythropoietin, cyclosporine [CsA], simvastatin, and levetiracetam) were published in the Journal of Neurotrauma. Operation brain trauma therapy now describes preliminary results on four additional therapies (glibenclamide, kollidon-VA64, AER-271, and amantadine). To date, levetiracetam was beneficial on cognitive outcome, histology, and/or biomarkers in two models. The second most successful drug, glibenclamide, improved motor function and histology in CCI. Other therapies showed model-dependent effects (amantadine and CsA). Critically, glial fibrillary acidic protein levels predicted treatment effects. Operation brain trauma therapy suggests that levetiracetam merits additional pre-clinical and clinical evaluation and that glibenclamide and amantadine merit testing in specific TBI phenotypes. Operation brain trauma therapy has established that rigorous, multi-center consortia could revolutionize TBI therapy and biomarker development.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3131862
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 36
social impact