We study the completion problem for simple k-Latin rectangles, which are a special case of the generalized latin rectangles for which embedding theorems are given by Andersen and Hilton (1980) in “Generalized Latin rectangles II: Embedding”, Discrete Mathematics 31(3). Here an alternative proof of those theorems are given for k-Latin rectangles in the “simple” case. More precisely, generalizing two classic results on the completability of partial Latin squares, we prove the necessary and sufficient conditions for a completion of a simple m × n k-Latin rectangle to a simple k-Latin square of order n and we show that if m ≤ n/2, any simple partial k-Latin square P of order m embeds in a simple k-Latin square L of order n. © 2018 by the author(s).

Completing simple partial k-latin squares

Lo Faro G.
;
TripodiA.
2018-01-01

Abstract

We study the completion problem for simple k-Latin rectangles, which are a special case of the generalized latin rectangles for which embedding theorems are given by Andersen and Hilton (1980) in “Generalized Latin rectangles II: Embedding”, Discrete Mathematics 31(3). Here an alternative proof of those theorems are given for k-Latin rectangles in the “simple” case. More precisely, generalizing two classic results on the completability of partial Latin squares, we prove the necessary and sufficient conditions for a completion of a simple m × n k-Latin rectangle to a simple k-Latin square of order n and we show that if m ≤ n/2, any simple partial k-Latin square P of order m embeds in a simple k-Latin square L of order n. © 2018 by the author(s).
File in questo prodotto:
File Dimensione Formato  
COMPLETING SIMPLE PARTIAL k-LATIN SQUARES.pdf

accesso aperto

Descrizione: Articolo Principale
Tipologia: Versione Editoriale (PDF)
Dimensione 191.82 kB
Formato Adobe PDF
191.82 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3132835
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact