Given a collection of graphs ℋ , a uniformly resolvable ℋ -design of order v is a decomposition of the edges of Kv into isomorphic copies of graphs from ℋ (also called blocks) in such a way that all blocks in a given parallel class are isomorphic to the same graph from ℋ . We consider the case ℋ = K1,2,K1,3 and prove that the necessary conditions for the existence of such designs are also sufficient. © 2018 by the author(s).

On uniformly resolvable K1_2,K1_3-designs

Lo Faro G.
Primo
;
Tripodi A.
Ultimo
2018-01-01

Abstract

Given a collection of graphs ℋ , a uniformly resolvable ℋ -design of order v is a decomposition of the edges of Kv into isomorphic copies of graphs from ℋ (also called blocks) in such a way that all blocks in a given parallel class are isomorphic to the same graph from ℋ . We consider the case ℋ = K1,2,K1,3 and prove that the necessary conditions for the existence of such designs are also sufficient. © 2018 by the author(s).
File in questo prodotto:
File Dimensione Formato  
ON UNIFORMLY RESOLVABLE {K1,2,K1,3}-DESIGNS.pdf

accesso aperto

Descrizione: Articolo Principale
Tipologia: Versione Editoriale (PDF)
Dimensione 201.19 kB
Formato Adobe PDF
201.19 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3132836
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact