Carotid atherosclerosis is very important in the pathogenesis of cerebral ischemia. Ultrasonography (US) and magnetic resonance imaging (MRI) are the predominant noninvasive techniques capable to identify the presence and stage of intra-plaque hemorrage. In this work, we propose a novel dedicated phantom that can be used for both US and MRI scanners to evaluate carotid atherosclerotic lesions. The phantom consists of a polymethyl metacrylate (PMMA) diagonally crossed by a PMMA hollow cylinder simulating a blood vessel. To simulate a stenosis, we inserted a plastic hollow tube inside the cylinder. Quantitative image analysis, based on accuracy measurements, was performed on two US and two MRI scanners. The accuracy measurements have highlighted the use of the 3.0 T MRI scanner to characterize the vessel stenosis. However, no significant difference between US and MRI techniques was found in Fisher exact test and inter-rater agreement. The concordance correlation coefficient showed a moderate agreement between some methods. Agreement between 3.0 T and other methods results poor, and this could be due to the fact that the 3.0 T has a better resolution compared to a US and MR 1.5 T. These methods seem to have similar efficacies for the evaluation of vessel stenosis, legitimizing the use of the developed phantom as a versatile and reproducible instrument that could be used during quality controls programs.
Evaluation of US and MRI techniques for carotid stenosis: a novel phantom approach
Bonanno, LillaPrimo
;Marino, Silvia;Morabito, Rosa;Testagrossa, Barbara;Acri, Giuseppe
Ultimo
2018-01-01
Abstract
Carotid atherosclerosis is very important in the pathogenesis of cerebral ischemia. Ultrasonography (US) and magnetic resonance imaging (MRI) are the predominant noninvasive techniques capable to identify the presence and stage of intra-plaque hemorrage. In this work, we propose a novel dedicated phantom that can be used for both US and MRI scanners to evaluate carotid atherosclerotic lesions. The phantom consists of a polymethyl metacrylate (PMMA) diagonally crossed by a PMMA hollow cylinder simulating a blood vessel. To simulate a stenosis, we inserted a plastic hollow tube inside the cylinder. Quantitative image analysis, based on accuracy measurements, was performed on two US and two MRI scanners. The accuracy measurements have highlighted the use of the 3.0 T MRI scanner to characterize the vessel stenosis. However, no significant difference between US and MRI techniques was found in Fisher exact test and inter-rater agreement. The concordance correlation coefficient showed a moderate agreement between some methods. Agreement between 3.0 T and other methods results poor, and this could be due to the fact that the 3.0 T has a better resolution compared to a US and MR 1.5 T. These methods seem to have similar efficacies for the evaluation of vessel stenosis, legitimizing the use of the developed phantom as a versatile and reproducible instrument that could be used during quality controls programs.File | Dimensione | Formato | |
---|---|---|---|
Evaluation_of_US_and_MRI_techniques.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
646.94 kB
Formato
Adobe PDF
|
646.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.