Focusing on the interplay between interface chemistry, electrochemistry, and integrated electronics, we show a novel low-cost and flexible biosensing platform for continuous glucose monitoring. The amperometric biosensing system features a planar three-electrode structure on a plastic substrate, and a wireless near-field communication-powered electronic system performing sensor analog front-end, A/D conversion, digital control, and display tasks. The working electrode is made of electropolymerized poly (3,4-ethylenedioxythiophene) film onto a polyethylene terephthalate/gold electrode followed by immobilization of cross-linked glucose oxidase by glutaraldehyde. The advantages offered by such a device, including low-cost materials and instrumentation as well as the good sensitivity of 9.24 mu ext{A}/({mathrm {mM}} cdot {mathrm {cm}}^{2}) are promising tools for point-of-care monitoring. It is demonstrated that the devices are good candidates for the development of advanced sensing approaches based on the investigation of the noise produced during operation (fluctuation-enhanced sensing).
Amperometric Biosensor and Front-End Electronics for Remote Glucose Monitoring by Crosslinked PEDOT-Glucose Oxidase
Scandurra, Graziella;Cannata, Gianluca;Giusi, Gino;Ciofi, Carmine;
2018-01-01
Abstract
Focusing on the interplay between interface chemistry, electrochemistry, and integrated electronics, we show a novel low-cost and flexible biosensing platform for continuous glucose monitoring. The amperometric biosensing system features a planar three-electrode structure on a plastic substrate, and a wireless near-field communication-powered electronic system performing sensor analog front-end, A/D conversion, digital control, and display tasks. The working electrode is made of electropolymerized poly (3,4-ethylenedioxythiophene) film onto a polyethylene terephthalate/gold electrode followed by immobilization of cross-linked glucose oxidase by glutaraldehyde. The advantages offered by such a device, including low-cost materials and instrumentation as well as the good sensitivity of 9.24 mu ext{A}/({mathrm {mM}} cdot {mathrm {cm}}^{2}) are promising tools for point-of-care monitoring. It is demonstrated that the devices are good candidates for the development of advanced sensing approaches based on the investigation of the noise produced during operation (fluctuation-enhanced sensing).File | Dimensione | Formato | |
---|---|---|---|
sensors_J.pdf
solo gestori archivio
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.12 MB
Formato
Adobe PDF
|
2.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.