Hypothesis: Although several researches have explored the dynamics of pluronic aqueous solutions under different conditions, little is known about the dynamical properties of pluronic copolymers in presence of nanoparticles. Knowing and understanding the fundamental dynamical behavior of such systems is crucial to optimize the formulation of high performance multifunctional structures. Experiments: In the present work, dynamic light scattering (DLS) is used to investigate the temperature dependence of the dynamical properties of Pluronic F127 aqueous solutions in presence of intercalated chitosan/clay nanocomposites; for comparison, the pluronic aqueous solution and the binary systems pluronic/chitosan and pluronic/montmorillonite having the same copolymer concentration were also investigated. Findings: DLS results show that the pluronic solution is characterized by a fast and a slow diffusion process. The faster diffusion is associated with the unimers interchange between micelles whereas the slower one is ascribed to the presence of micellar clusters that undergo dehydration as the temperature increases. Starting from these observations, the dynamics of the pluronic-based/water systems was analyzed and, depending upon solution temperature, the observed decays were attributed to differently sized entities. The DLS findings give strong evidence for the coexistence of complex states of aggregation allowing us to get a better insight into the architecture of the investigated systems
Aggregation behavior of pluronic F127 solutions in presence of chitosan/clay nanocomposites examined by dynamic light scattering
Branca, Caterina
;D'Angelo, Giovanna
2019-01-01
Abstract
Hypothesis: Although several researches have explored the dynamics of pluronic aqueous solutions under different conditions, little is known about the dynamical properties of pluronic copolymers in presence of nanoparticles. Knowing and understanding the fundamental dynamical behavior of such systems is crucial to optimize the formulation of high performance multifunctional structures. Experiments: In the present work, dynamic light scattering (DLS) is used to investigate the temperature dependence of the dynamical properties of Pluronic F127 aqueous solutions in presence of intercalated chitosan/clay nanocomposites; for comparison, the pluronic aqueous solution and the binary systems pluronic/chitosan and pluronic/montmorillonite having the same copolymer concentration were also investigated. Findings: DLS results show that the pluronic solution is characterized by a fast and a slow diffusion process. The faster diffusion is associated with the unimers interchange between micelles whereas the slower one is ascribed to the presence of micellar clusters that undergo dehydration as the temperature increases. Starting from these observations, the dynamics of the pluronic-based/water systems was analyzed and, depending upon solution temperature, the observed decays were attributed to differently sized entities. The DLS findings give strong evidence for the coexistence of complex states of aggregation allowing us to get a better insight into the architecture of the investigated systemsFile | Dimensione | Formato | |
---|---|---|---|
3137558.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
808.18 kB
Formato
Adobe PDF
|
808.18 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.