A space X is monotonically Lindelof if there is an operator r that assigns to every open cover $cal U$ a countable open cover $r({cal U})$ so that $r({cal U})$ refines $cal U$, and $r({calU})$ refines $r({cal V})$ whenever $cal U$ refines $cal V$. We consider the monotone versions of the multicover forms of the Lindelof property: Menger, Hurewicz, Rothberger.
Monotone versions of some selection principles
Bonanzinga, M.
;BASILE, Fortunata Aurora
2019-01-01
Abstract
A space X is monotonically Lindelof if there is an operator r that assigns to every open cover $cal U$ a countable open cover $r({cal U})$ so that $r({cal U})$ refines $cal U$, and $r({calU})$ refines $r({cal V})$ whenever $cal U$ refines $cal V$. We consider the monotone versions of the multicover forms of the Lindelof property: Menger, Hurewicz, Rothberger.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Monotone versions of some selection principles Bonanzinga_Matveev_Basile.pdf
solo utenti autorizzati
Descrizione: Articolo scientifico
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
5.57 MB
Formato
Adobe PDF
|
5.57 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.