A space X is monotonically Lindelof if there is an operator r that assigns to every open cover $cal U$ a countable open cover $r({cal U})$ so that $r({cal U})$ refines $cal U$, and $r({calU})$ refines $r({cal V})$ whenever $cal U$ refines $cal V$. We consider the monotone versions of the multicover forms of the Lindelof property: Menger, Hurewicz, Rothberger.

Monotone versions of some selection principles

Bonanzinga, M.
;
BASILE, Fortunata Aurora
2019-01-01

Abstract

A space X is monotonically Lindelof if there is an operator r that assigns to every open cover $cal U$ a countable open cover $r({cal U})$ so that $r({cal U})$ refines $cal U$, and $r({calU})$ refines $r({cal V})$ whenever $cal U$ refines $cal V$. We consider the monotone versions of the multicover forms of the Lindelof property: Menger, Hurewicz, Rothberger.
2019
File in questo prodotto:
File Dimensione Formato  
Monotone versions of some selection principles Bonanzinga_Matveev_Basile.pdf

solo utenti autorizzati

Descrizione: Articolo scientifico
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.57 MB
Formato Adobe PDF
5.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3137979
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact