Ultrastrong coupling between light and matter has, in the past decade, transitioned from a theoretical idea to an experimental reality. It is a new regime of quantum light–matter interaction, which goes beyond weak and strong coupling to make the coupling strength comparable to the transition frequencies in the system. The achievement of weak and strong coupling has led to increased control of quantum systems and to applications such as lasers, quantum sensing, and quantum information processing. Here we review the theory of quantum systems with ultrastrong coupling, discussing entangled ground states with virtual excitations, new avenues for nonlinear optics, and connections to several important physical models. We also overview the multitude of experimental setups, including superconducting circuits, organic molecules, semiconductor polaritons, and optomechanical systems, that have now achieved ultrastrong coupling. We conclude by discussing the many potential applications that these achievements enable in physics and chemistry.

Ultrastrong coupling between light and matter

Savasta, Salvatore
Penultimo
Writing – Original Draft Preparation
;
2019-01-01

Abstract

Ultrastrong coupling between light and matter has, in the past decade, transitioned from a theoretical idea to an experimental reality. It is a new regime of quantum light–matter interaction, which goes beyond weak and strong coupling to make the coupling strength comparable to the transition frequencies in the system. The achievement of weak and strong coupling has led to increased control of quantum systems and to applications such as lasers, quantum sensing, and quantum information processing. Here we review the theory of quantum systems with ultrastrong coupling, discussing entangled ground states with virtual excitations, new avenues for nonlinear optics, and connections to several important physical models. We also overview the multitude of experimental setups, including superconducting circuits, organic molecules, semiconductor polaritons, and optomechanical systems, that have now achieved ultrastrong coupling. We conclude by discussing the many potential applications that these achievements enable in physics and chemistry.
2019
File in questo prodotto:
File Dimensione Formato  
Nature Reviews Physics 2019 Savasta.pdf

solo gestori archivio

Descrizione: pdf 21 pagine
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.86 MB
Formato Adobe PDF
4.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3138380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 867
  • ???jsp.display-item.citation.isi??? 633
social impact