Bivalve molluscs possess effective cellular and humoral defence mechanisms against bacterial infection. Although the immune responses of mussels to challenge with pathogenic vibrios have been largely investigated, the effects at the site of injection at the tissue level have not been so far evaluated. To this aim, mussels Mytilus galloprovincialis were herein in vivo challenged with Vibrio splendidus to assess the responses induced in hemolymph and posterior adductor muscle (PAM), being the site of bacterial infection. The number of living intra-hemocyte bacteria increased after the first hour post-injection (p.i.), suggesting the occurrence of an intense phagocytosis, while clearance was observed within 24 h p.i. A recruitment of hemocytes at the injection site was found in mussel PAM, together with marked morphological changes in the volume of muscular fibers, with a recovery of muscle tissue organization after 48 h p.i. A concomitant impairment in the osmoregulatory processes were observed in PAM by an initial inhibition of aquaporins and increased immunopositivity of Na+/K+ ATPase ionic pump, strictly related to the histological alterations and hemocyte infiltration detected in PAM. Accordingly, an intense cell turnover activity was also recorded following the infection event. Overall, results indicated the hemolymph as the system responsible for the physiological adaptations in mussels to stressful factors, such as pathogenicity, for the maintenance of homeostasis and immune defence. Also, the osmotic balance and cell turnover can be used as objective diagnostic criteria to evaluate the physiological state of mussels following bacterial infection, which may be relevant in aquaculture and biomonitoring studies.

Responses of marine mussel Mytilus galloprovincialis (Bivalvia: Mytilidae) after infection with the pathogen Vibrio splendidus

Maisano, Maria
Co-primo
;
Cappello, Tiziana;Oliva, Sabrina;Mauceri, Angela;
2019-01-01

Abstract

Bivalve molluscs possess effective cellular and humoral defence mechanisms against bacterial infection. Although the immune responses of mussels to challenge with pathogenic vibrios have been largely investigated, the effects at the site of injection at the tissue level have not been so far evaluated. To this aim, mussels Mytilus galloprovincialis were herein in vivo challenged with Vibrio splendidus to assess the responses induced in hemolymph and posterior adductor muscle (PAM), being the site of bacterial infection. The number of living intra-hemocyte bacteria increased after the first hour post-injection (p.i.), suggesting the occurrence of an intense phagocytosis, while clearance was observed within 24 h p.i. A recruitment of hemocytes at the injection site was found in mussel PAM, together with marked morphological changes in the volume of muscular fibers, with a recovery of muscle tissue organization after 48 h p.i. A concomitant impairment in the osmoregulatory processes were observed in PAM by an initial inhibition of aquaporins and increased immunopositivity of Na+/K+ ATPase ionic pump, strictly related to the histological alterations and hemocyte infiltration detected in PAM. Accordingly, an intense cell turnover activity was also recorded following the infection event. Overall, results indicated the hemolymph as the system responsible for the physiological adaptations in mussels to stressful factors, such as pathogenicity, for the maintenance of homeostasis and immune defence. Also, the osmotic balance and cell turnover can be used as objective diagnostic criteria to evaluate the physiological state of mussels following bacterial infection, which may be relevant in aquaculture and biomonitoring studies.
2019
File in questo prodotto:
File Dimensione Formato  
Parisi et al., 2019.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.17 MB
Formato Adobe PDF
3.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3138536
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact