We prove that the four-point boundary value problem -[ϕ(u′)]′=f(t,u,u′),u(0)=αu(ξ),u(T)=βu(η),where f: [ 0 , T] × R 2 → R is continuous, α,β∈[0,1), 0 < ξ< η< T, and ϕ: (- a, a) → R (0 < a< ∞) is an increasing homeomorphism, which is always solvable. When instead of f is some g: [ 0 , T] × [ 0 , ∞) → [ 0 , ∞) , we obtain existence, localization, and multiplicity of positive solutions. Our approach relies on Schauder and Krasnoselskii’s fixed point theorems, combined with a Harnack-type inequality.

A four-point boundary value problem with singular ϕ-Laplacian

Chinní, Antonia
Primo
;
Di Bella, Beatrice
Secondo
;
2019-01-01

Abstract

We prove that the four-point boundary value problem -[ϕ(u′)]′=f(t,u,u′),u(0)=αu(ξ),u(T)=βu(η),where f: [ 0 , T] × R 2 → R is continuous, α,β∈[0,1), 0 < ξ< η< T, and ϕ: (- a, a) → R (0 < a< ∞) is an increasing homeomorphism, which is always solvable. When instead of f is some g: [ 0 , T] × [ 0 , ∞) → [ 0 , ∞) , we obtain existence, localization, and multiplicity of positive solutions. Our approach relies on Schauder and Krasnoselskii’s fixed point theorems, combined with a Harnack-type inequality.
2019
File in questo prodotto:
File Dimensione Formato  
JFPTA.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 403.34 kB
Formato Adobe PDF
403.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3140011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact