A previous report indicated that the flavonoid-rich extract of bergamot juice (BJe) exerts an anti-inflammatory effect through the activation of SIRT1 in leukemic monocytes THP-1 exposed to lipopolysaccharide (LPS). In this study, we deeply investigate the mode of action of BJe, along with its major flavonoids on SIRT1 through cell-free, in silico, and in vitro experimental models. In the cell-free assay, all the tested compounds as well as the whole BJe inhibited the deacetylase activity of SIRT1. This finding was reinforced by the results of the in silico study. In THP-1 cells exposed to LPS, a reduction of SIRT1 activity was observed, effect that was reverted by the pre-incubation with either BJe or its major flavonoids. This effect was also observed at gene level. Employing an activator and an inhibitor of AMP-activated protein kinase (AMPK; AICAR and dorsomorphin, respectively), we discovered its involvement in the activation of SIRT1 elicited by BJe or its major flavonoids in whole cell. Our study indicates the dual role of BJe and its components, depending on the employed experimental model as well as reveals their mode of action on the AMPK/SIRT1 axis, suggesting their role as promising candidates in pathologies in which this axis is implied.
The link between the AMPK/SIRT1 axis and a flavonoid-rich extract of Citrus bergamia juice: A cell-free, in silico, and in vitro study
Maugeri, AlessandroPrimo
;Ferlazzo, NadiaSecondo
;De Luca, Laura;Gitto, RosariaPenultimo
;Navarra, Michele
Ultimo
2019-01-01
Abstract
A previous report indicated that the flavonoid-rich extract of bergamot juice (BJe) exerts an anti-inflammatory effect through the activation of SIRT1 in leukemic monocytes THP-1 exposed to lipopolysaccharide (LPS). In this study, we deeply investigate the mode of action of BJe, along with its major flavonoids on SIRT1 through cell-free, in silico, and in vitro experimental models. In the cell-free assay, all the tested compounds as well as the whole BJe inhibited the deacetylase activity of SIRT1. This finding was reinforced by the results of the in silico study. In THP-1 cells exposed to LPS, a reduction of SIRT1 activity was observed, effect that was reverted by the pre-incubation with either BJe or its major flavonoids. This effect was also observed at gene level. Employing an activator and an inhibitor of AMP-activated protein kinase (AMPK; AICAR and dorsomorphin, respectively), we discovered its involvement in the activation of SIRT1 elicited by BJe or its major flavonoids in whole cell. Our study indicates the dual role of BJe and its components, depending on the employed experimental model as well as reveals their mode of action on the AMPK/SIRT1 axis, suggesting their role as promising candidates in pathologies in which this axis is implied.File | Dimensione | Formato | |
---|---|---|---|
Phytother Res BJE SIRT1 Maugeri '19.pdf
solo gestori archivio
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.