Nowadays, active targeting of nanotherapeutics is a challenging issue. Here, we propose a rational design of a ternary nanoassembly (SAP) composed of nonionic amphiphilic β-cyclodextrins (amphiphilic CD) incorporating pheophorbide (Pheo) as a phototherapeutic and an adamantanyl-folic acid conjugate (Ada-FA) to target tumor cells overexpressing α-folate receptor (FR-α(+)). Dynamic light scattering and ζ-potential pointed out the presence of nanoassemblies bearing a negative surface charge (ζ = −51 mV). Morphology of SAP was investigated by atomic force microscopy and microphotoluminescence, indicating the presence of highly emissive near-spherical assemblies of about 280 nm in size. Complementary spectroscopic techniques such as ROESY-NMR, UV/vis and steady-state fluorescence revealed that the folic acid protrudes out of amphiphilic CD rims, prone for recognition with FRα. Pheo was strongly loaded in the nanoassembly mostly in monomeric form, thus generating singlet oxygen (1 O2) and consequentely showing phototherapeutic action. SAP remained stable until 2 weeks in aqueous solutions. Stability studies in biologically relevant media pointed out the ability of SAP to interact with serum proteins by means of the oligoethylenglycole fringe, without destabilization. Release experiments demonstrated the sustained release of Pheo from SAP in environments mimiking physiological conditions (∼20% within 1 week), plausibly suggesting low Pheo leaking and high integrity of the assembly within 24 h, time spent on average to reach the target sites. Cellular uptake of SAP was confirmed by confocal microscopy, pointing out that SAP was internalized into the tumoral cells expressing FR-α more efficiently than SP. SAP showed improved phototoxicity in human breast MCF-7 cancer cells FR-α(+) (IC50 = 270 nM) with respect to human prostate carcinoma PC3 cells (IC50 = 700 nM) that express a low level of that receptor (FR-α(−)). Finally, an improved phototoxicity in FR-α(+) MCF-7 cells (IC50 = 270 nM) was assessed after treatment with SAP vs SP (IC50 = 600 nM) which was designed without Ada-FA as a targeting unit.

Folate-Decorated Amphiphilic Cyclodextrins as Cell-Targeted Nanophototherapeutics

Zagami R.;Piperno A.
Co-primo
;
Scala A.;Triolo C.;Monsu Scolaro L.
Penultimo
;
2019-01-01

Abstract

Nowadays, active targeting of nanotherapeutics is a challenging issue. Here, we propose a rational design of a ternary nanoassembly (SAP) composed of nonionic amphiphilic β-cyclodextrins (amphiphilic CD) incorporating pheophorbide (Pheo) as a phototherapeutic and an adamantanyl-folic acid conjugate (Ada-FA) to target tumor cells overexpressing α-folate receptor (FR-α(+)). Dynamic light scattering and ζ-potential pointed out the presence of nanoassemblies bearing a negative surface charge (ζ = −51 mV). Morphology of SAP was investigated by atomic force microscopy and microphotoluminescence, indicating the presence of highly emissive near-spherical assemblies of about 280 nm in size. Complementary spectroscopic techniques such as ROESY-NMR, UV/vis and steady-state fluorescence revealed that the folic acid protrudes out of amphiphilic CD rims, prone for recognition with FRα. Pheo was strongly loaded in the nanoassembly mostly in monomeric form, thus generating singlet oxygen (1 O2) and consequentely showing phototherapeutic action. SAP remained stable until 2 weeks in aqueous solutions. Stability studies in biologically relevant media pointed out the ability of SAP to interact with serum proteins by means of the oligoethylenglycole fringe, without destabilization. Release experiments demonstrated the sustained release of Pheo from SAP in environments mimiking physiological conditions (∼20% within 1 week), plausibly suggesting low Pheo leaking and high integrity of the assembly within 24 h, time spent on average to reach the target sites. Cellular uptake of SAP was confirmed by confocal microscopy, pointing out that SAP was internalized into the tumoral cells expressing FR-α more efficiently than SP. SAP showed improved phototoxicity in human breast MCF-7 cancer cells FR-α(+) (IC50 = 270 nM) with respect to human prostate carcinoma PC3 cells (IC50 = 700 nM) that express a low level of that receptor (FR-α(−)). Finally, an improved phototoxicity in FR-α(+) MCF-7 cells (IC50 = 270 nM) was assessed after treatment with SAP vs SP (IC50 = 600 nM) which was designed without Ada-FA as a targeting unit.
2019
File in questo prodotto:
File Dimensione Formato  
52- Biomacromol 2019,20,2530-2544.pdf

solo utenti autorizzati

Descrizione: Biomacromolecules 2019
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.68 MB
Formato Adobe PDF
5.68 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3142832
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 34
social impact