A straightforward and green method for the synthesis of gold, silver, and silver chloride nanoparticles (Au NPs and Ag/AgCl NPs) was developed using three different microbial exopolymers (EP) as reducing and stabilizing agents. The exopolysaccharides EPS B3-15 and EPS T14 and the poly-γ-glutamic acid γ-PGA-APA were produced by thermophilic bacteria isolated from shallow hydrothermal vents off the Eolian Islands (Italy) in the Mediterranean Sea. The production of metal NPs was monitored by UV−Vis measurements by the typical plasmon resonance absorption peak and their antimicrobial activity towards Gram-positive and Gram- negative bacteria (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa), as well as fungi (Candida albicans) was investigated. The biological evaluation showed no activity for EP-Au NPs, except against E. coli, whereas EP-Ag NPs exhibited a broad-spectrum of activity. The chemical composition, morphology, and size of EP-Ag NPs were investigated by UV–Vis, zeta potential (ζ), dynamic light scattering (DLS) measurements and transmission electron microscopy (TEM). The best antimicrobial results were obtained for EPS B3-15-Ag NPs and EPS T14-Ag NPs (Minimum Inhibitory Concentration, MIC: 9.37–45 µg/mL; Minimum Bactericidal Concentration/Minimum Fungicidal Concentration, MBC/MFC: 11.25–75 µg/mL).

Marine bacterial exopolymers-mediated green synthesis of noble metal nanoparticles with antimicrobial properties

Scala A.
Primo
;
Piperno A.
Secondo
;
Ginestra G.;Marino A.;Nostro A.;Zammuto V.
Penultimo
;
Gugliandolo C.
Ultimo
2019-01-01

Abstract

A straightforward and green method for the synthesis of gold, silver, and silver chloride nanoparticles (Au NPs and Ag/AgCl NPs) was developed using three different microbial exopolymers (EP) as reducing and stabilizing agents. The exopolysaccharides EPS B3-15 and EPS T14 and the poly-γ-glutamic acid γ-PGA-APA were produced by thermophilic bacteria isolated from shallow hydrothermal vents off the Eolian Islands (Italy) in the Mediterranean Sea. The production of metal NPs was monitored by UV−Vis measurements by the typical plasmon resonance absorption peak and their antimicrobial activity towards Gram-positive and Gram- negative bacteria (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa), as well as fungi (Candida albicans) was investigated. The biological evaluation showed no activity for EP-Au NPs, except against E. coli, whereas EP-Ag NPs exhibited a broad-spectrum of activity. The chemical composition, morphology, and size of EP-Ag NPs were investigated by UV–Vis, zeta potential (ζ), dynamic light scattering (DLS) measurements and transmission electron microscopy (TEM). The best antimicrobial results were obtained for EPS B3-15-Ag NPs and EPS T14-Ag NPs (Minimum Inhibitory Concentration, MIC: 9.37–45 µg/mL; Minimum Bactericidal Concentration/Minimum Fungicidal Concentration, MBC/MFC: 11.25–75 µg/mL).
2019
File in questo prodotto:
File Dimensione Formato  
53- Polymers 2019, 11, 1157.pdf

accesso aperto

Descrizione: Polymers 2019
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3142834
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact