Rapidly growing mycobacteria (RGM) are environmental bacteria found worldwide with a propensity to produce skin and soft-tissue infections. Among them, the most clinically relevant species is Mycobacterium abscessus. Multiple resistance to antibiotics and the ability to form biofilm contributes considerably to the treatment failure. The search of novel anti-mycobacterial agents for the control of biofilm growth mode is crucial. The aim of the present study was to evaluate the activity of carvacrol (CAR) against planktonic and biofilm cells of resistant RGM strains. The susceptibility of RGM strains (n = 11) to antibiotics and CAR was assessed by MIC/MBC evaluation. The CAR activity was estimated by also vapour contact assay. The effect on biofilm formation and preformed biofilm was measured by evaluation of bacterial growth, biofilm biomass and biofilm metabolic activity. MIC values were equal to 64 μg/mL for most of RGM isolates (32-512 μg/mL), MBCs were 2-4 times higher than MICs, and MICs of vapours were lower (16 μg/mL for most RGM isolates) than MICs in liquid phase. Regarding the biofilm, CAR at concentrations of 1/2 × MIC and 1/4 × MIC showed a strong inhibition of biofilm formation (61-77%) and at concentration above the MIC (2-8 × MIC) produced significant inhibition of 4- and 8-day preformed biofilms. In conclusion, CAR could have a potential use, also in vapour phase, for the control of RGM.

Efficacy of carvacrol against resistant rapidly growing mycobacteria in the planktonic and biofilm growth mode

Ginestra G.
Formal Analysis
;
Marino A.
Formal Analysis
;
Nostro A.
Ultimo
Conceptualization
2019-01-01

Abstract

Rapidly growing mycobacteria (RGM) are environmental bacteria found worldwide with a propensity to produce skin and soft-tissue infections. Among them, the most clinically relevant species is Mycobacterium abscessus. Multiple resistance to antibiotics and the ability to form biofilm contributes considerably to the treatment failure. The search of novel anti-mycobacterial agents for the control of biofilm growth mode is crucial. The aim of the present study was to evaluate the activity of carvacrol (CAR) against planktonic and biofilm cells of resistant RGM strains. The susceptibility of RGM strains (n = 11) to antibiotics and CAR was assessed by MIC/MBC evaluation. The CAR activity was estimated by also vapour contact assay. The effect on biofilm formation and preformed biofilm was measured by evaluation of bacterial growth, biofilm biomass and biofilm metabolic activity. MIC values were equal to 64 μg/mL for most of RGM isolates (32-512 μg/mL), MBCs were 2-4 times higher than MICs, and MICs of vapours were lower (16 μg/mL for most RGM isolates) than MICs in liquid phase. Regarding the biofilm, CAR at concentrations of 1/2 × MIC and 1/4 × MIC showed a strong inhibition of biofilm formation (61-77%) and at concentration above the MIC (2-8 × MIC) produced significant inhibition of 4- and 8-day preformed biofilms. In conclusion, CAR could have a potential use, also in vapour phase, for the control of RGM.
2019
File in questo prodotto:
File Dimensione Formato  
pone.0219038.pdf

accesso aperto

Descrizione: Efficacy of carvacrol against resistant rapidly growing mycobacteria in the planktonic and biofilm growth mode
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 981.39 kB
Formato Adobe PDF
981.39 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3143114
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact