In a transformation method, the numerical solution of a given boundary value problem is obtained by solving one or more related initial value problems. Therefore, a transformation method, like a shooting method, is an initial value method. The main difference between a transformation and a shooting method is that the former is conceived and derive its formulation from the scaling invariance theory. This paper is concerned with the application of the iterative transformation method to several problems in the boundary layer theory. The iterative method is an extension of the Tiipfer's non-iterative algorithm developed as a simple way to solve the celebrated Blasius problem. This iterative method provides a simple numerical test for the existence and uniqueness of solutions. Here we show how the method can be applied to problems with a homogeneous boundary conditions at infinity and in particular we solve the Sakiadis problem of boundary layer theory. Moreover, we show how to couple our method with Newton's root-finder. The obtained numerical results compare well with those available in the literature. The main aim here is that any method developed for the Blasius, or the Sakiadis, problem might be extended to more challenging or interesting problems. In this context, the iterative transformation method has been recently applied to compute the normal and reverse flow solutions of Stewartson for the Falkner-Skan model (Fazio, 2013).

The iterative transformation method

Riccardo Fazio
2019-01-01

Abstract

In a transformation method, the numerical solution of a given boundary value problem is obtained by solving one or more related initial value problems. Therefore, a transformation method, like a shooting method, is an initial value method. The main difference between a transformation and a shooting method is that the former is conceived and derive its formulation from the scaling invariance theory. This paper is concerned with the application of the iterative transformation method to several problems in the boundary layer theory. The iterative method is an extension of the Tiipfer's non-iterative algorithm developed as a simple way to solve the celebrated Blasius problem. This iterative method provides a simple numerical test for the existence and uniqueness of solutions. Here we show how the method can be applied to problems with a homogeneous boundary conditions at infinity and in particular we solve the Sakiadis problem of boundary layer theory. Moreover, we show how to couple our method with Newton's root-finder. The obtained numerical results compare well with those available in the literature. The main aim here is that any method developed for the Blasius, or the Sakiadis, problem might be extended to more challenging or interesting problems. In this context, the iterative transformation method has been recently applied to compute the normal and reverse flow solutions of Stewartson for the Falkner-Skan model (Fazio, 2013).
2019
File in questo prodotto:
File Dimensione Formato  
3143341.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 659.64 kB
Formato Adobe PDF
659.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3143341
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact