Quantum systems are affected by interactions with their environments, causing decoherence through two processes: pure dephasing and energy relaxation. For quantum information processing it is important to increase the coherence time of Josephson qubits and other artificial two-level atoms. We show theoretically that if the coupling between these qubits and a cavity field is longitudinal and in the ultrastrong-coupling regime, the system is strongly protected against relaxation. Vice versa, if the coupling is transverse and in the ultrastrong-coupling regime, the system is protected against pure dephasing. Taking advantage of the relaxation suppression, we show that it is possible to enhance their coherence time and use these qubits as quantum memories. Indeed, to preserve the coherence from pure dephasing, we prove that it is possible to apply dynamical decoupling. We also use an auxiliary atomic level to store and retrieve quantum information.

Long-lasting quantum memories: Extending the coherence time of superconducting artificial atoms in the ultrastrong-coupling regime

Stassi R.
;
2018-01-01

Abstract

Quantum systems are affected by interactions with their environments, causing decoherence through two processes: pure dephasing and energy relaxation. For quantum information processing it is important to increase the coherence time of Josephson qubits and other artificial two-level atoms. We show theoretically that if the coupling between these qubits and a cavity field is longitudinal and in the ultrastrong-coupling regime, the system is strongly protected against relaxation. Vice versa, if the coupling is transverse and in the ultrastrong-coupling regime, the system is protected against pure dephasing. Taking advantage of the relaxation suppression, we show that it is possible to enhance their coherence time and use these qubits as quantum memories. Indeed, to preserve the coherence from pure dephasing, we prove that it is possible to apply dynamical decoupling. We also use an auxiliary atomic level to store and retrieve quantum information.
2018
File in questo prodotto:
File Dimensione Formato  
PhysRevA.97.033823.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3143745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 40
social impact