A total of 32 electrohypersensitivity (EHS) self-reporting patients were serially included in the present prospective study for oxidative stress and antioxidative stress response assessment. All thiobarbituric acid-reactive substances (TBARs) were measured in the plasma, particularly malondialdehyde (MDA) for lipid peroxidation; additional measurements included total thiol group molecules, reduced glutathione (GSH), oxidized glutathione (GSSG) for oxidative stress assessment and nitrotyrosine, a marker of peroxynitrite-induced oxidative/nitrosative stress. In addition, the activity of Cu-Zn superoxide dismutase (SOD1) was measured in red blood cells (RBCs) and glutathione reductase (GR) and glutathione peroxidase (GPx) in RBCs and plasma. Depending of the biomarker considered, 30–50% of EHS self-reporting patients presented statistically significantly increased TBARs, MDA, GSSG and NTT mean plasmatic level values in comparison with normal values obtained in healthy controls (P<0.0001). By contrast, there were no plasmatic level values above the upper normal limits for GSH, GSH/GSSG ratio, total glutathione (GluT) and GSH/GluT ratio, and values for these GSH-associated biomarkers were statistically significantly decreased in 20–40% of the patients (P<0.0001). Furthermore, in RBCs, mean SOD1 and GPx activities were observed to be statistically significantly increased in ~60% and 19% (P<0.0001) of the patients, respectively, while increased GR activity in RBCs was observed in only 6% of the patients. The present study reports for the first time, to the best of our knowledge, that overall ~80% of EHS self-reporting patients present with one, two or three detectable oxidative stress biomarkers in their peripheral blood, meaning that these patients-as is the case for cancer, Alzheimer's disease or other pathological conditions-present with a true objective new pathological disorder.
Oxidative stress in electrohypersensitivity self‑reporting patients: Results of a prospective in vivo investigation with comprehensive molecular analysis
Caccamo DData Curation
;
2018-01-01
Abstract
A total of 32 electrohypersensitivity (EHS) self-reporting patients were serially included in the present prospective study for oxidative stress and antioxidative stress response assessment. All thiobarbituric acid-reactive substances (TBARs) were measured in the plasma, particularly malondialdehyde (MDA) for lipid peroxidation; additional measurements included total thiol group molecules, reduced glutathione (GSH), oxidized glutathione (GSSG) for oxidative stress assessment and nitrotyrosine, a marker of peroxynitrite-induced oxidative/nitrosative stress. In addition, the activity of Cu-Zn superoxide dismutase (SOD1) was measured in red blood cells (RBCs) and glutathione reductase (GR) and glutathione peroxidase (GPx) in RBCs and plasma. Depending of the biomarker considered, 30–50% of EHS self-reporting patients presented statistically significantly increased TBARs, MDA, GSSG and NTT mean plasmatic level values in comparison with normal values obtained in healthy controls (P<0.0001). By contrast, there were no plasmatic level values above the upper normal limits for GSH, GSH/GSSG ratio, total glutathione (GluT) and GSH/GluT ratio, and values for these GSH-associated biomarkers were statistically significantly decreased in 20–40% of the patients (P<0.0001). Furthermore, in RBCs, mean SOD1 and GPx activities were observed to be statistically significantly increased in ~60% and 19% (P<0.0001) of the patients, respectively, while increased GR activity in RBCs was observed in only 6% of the patients. The present study reports for the first time, to the best of our knowledge, that overall ~80% of EHS self-reporting patients present with one, two or three detectable oxidative stress biomarkers in their peripheral blood, meaning that these patients-as is the case for cancer, Alzheimer's disease or other pathological conditions-present with a true objective new pathological disorder.File | Dimensione | Formato | |
---|---|---|---|
ijmm_42_4_1885_PDF.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
747.22 kB
Formato
Adobe PDF
|
747.22 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.