The resistive index (RI) is an indirect measurement of arterial resistance by means of a ratio between the peak systolic and end diastolic velocities recorded with a spectral Doppler device, especially used to evaluate the vascular damage in ocular diseases such as glaucoma. Some ocular variables such as the intraocular pressure (IOP), the choroidal thickness, the axial length and the ocular blood flow may be influenced by physical exercise. The purpose of this study was to evaluate the influence of the exercise on the RI of the medial long posterior ciliary artery in dogs, and correlate the data obtained with the IOP values. Ten clinically healthy dogs were sub- jected to moderate physical exercise on a canine motorised treadmill at different speeds for 45 minutes. A colour Doppler examination was performed and the RI values were calculated for the medial long posterior ciliary artery at rest, immediately after the exercise, and after 60 minutes at the end of the exercise. At the same times, the IOP was recorded by applanation tonometry. The data were analysed by a two-way repeated ANOVA measurement in order to compare the RI and the IOP. Wilcoxon’s test was applied for the post hoc comparison. Spearman’s rank correlation for non-normal distribution was used to determine a relationship between the RI and the IOP. The at rest RI was 0.722 +/–0.022, IOP 12.38 +/3.21 mm Hg. A significant decrease in the RI was observed imme- diately after the exercise (0.697 +/–0.035) and during the passive recovery phase (0.682 +/–0.042). A significant decrease in the IOP (11+/3.39 mmHg) was recorded after 60 min of the passive recovery phase; at the end of the exercise, a slight decrease (12.29+/4.26 mm Hg) mm Hg was detected. During the test, a linear correlation between the RI and the IOP was observed. Our results suggest that exercise induces the modification of the ophthalmic blood flow in dogs, presumably related to the compensatory neuro-hormonal mechanisms.

The effect of moderate treadmill exercise on the resistive index of the medial long posterior ciliary artery in dogs

Pugliese, M
Primo
;
Biondi, V;Passantino, A;Zhang, K;Macri, F
Ultimo
2019-01-01

Abstract

The resistive index (RI) is an indirect measurement of arterial resistance by means of a ratio between the peak systolic and end diastolic velocities recorded with a spectral Doppler device, especially used to evaluate the vascular damage in ocular diseases such as glaucoma. Some ocular variables such as the intraocular pressure (IOP), the choroidal thickness, the axial length and the ocular blood flow may be influenced by physical exercise. The purpose of this study was to evaluate the influence of the exercise on the RI of the medial long posterior ciliary artery in dogs, and correlate the data obtained with the IOP values. Ten clinically healthy dogs were sub- jected to moderate physical exercise on a canine motorised treadmill at different speeds for 45 minutes. A colour Doppler examination was performed and the RI values were calculated for the medial long posterior ciliary artery at rest, immediately after the exercise, and after 60 minutes at the end of the exercise. At the same times, the IOP was recorded by applanation tonometry. The data were analysed by a two-way repeated ANOVA measurement in order to compare the RI and the IOP. Wilcoxon’s test was applied for the post hoc comparison. Spearman’s rank correlation for non-normal distribution was used to determine a relationship between the RI and the IOP. The at rest RI was 0.722 +/–0.022, IOP 12.38 +/3.21 mm Hg. A significant decrease in the RI was observed imme- diately after the exercise (0.697 +/–0.035) and during the passive recovery phase (0.682 +/–0.042). A significant decrease in the IOP (11+/3.39 mmHg) was recorded after 60 min of the passive recovery phase; at the end of the exercise, a slight decrease (12.29+/4.26 mm Hg) mm Hg was detected. During the test, a linear correlation between the RI and the IOP was observed. Our results suggest that exercise induces the modification of the ophthalmic blood flow in dogs, presumably related to the compensatory neuro-hormonal mechanisms.
2019
File in questo prodotto:
File Dimensione Formato  
Pugliese et al. 162_2018-VETMED.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 351.66 kB
Formato Adobe PDF
351.66 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3147086
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact