Water quality encompasses the water physical, biological, and chemical parameters. It generally affects the fish growth and welfare. Thus, the success of a commercial aquaculture project depends on supplying the optimum water quality for prompt fish growth at the minimum cost of resources. Although the aquaculture environment is a complicated system, depending on various water quality variables, only less of them have a critical role. One of these vital parameters is dissolved oxygen (DO) level, which requires continuous oversight in aquaculture systems. In addition, the processes of natural stream refinement require suitable DO levels in order to extend for aerobic life forms. The depletion of DO concentration (called hypoxia) in pond water causes great stress on fish where DO levels that remain below 1–2 mg/L for a few hours can adversely affect fish growth resulting in fish death. Furthermore, hypoxia has substantial effects on fish physiological and immune responses, making them more susceptible to diseases. Therefore, to avoid disease outbreak in modern aquaculture production systems where fish are intensified and more crowded, increasing attention should be taken into account on DO levels.

Fish response to hypoxia stress: growth, physiological, and immunological biomarkers

Faggio C.
2019-01-01

Abstract

Water quality encompasses the water physical, biological, and chemical parameters. It generally affects the fish growth and welfare. Thus, the success of a commercial aquaculture project depends on supplying the optimum water quality for prompt fish growth at the minimum cost of resources. Although the aquaculture environment is a complicated system, depending on various water quality variables, only less of them have a critical role. One of these vital parameters is dissolved oxygen (DO) level, which requires continuous oversight in aquaculture systems. In addition, the processes of natural stream refinement require suitable DO levels in order to extend for aerobic life forms. The depletion of DO concentration (called hypoxia) in pond water causes great stress on fish where DO levels that remain below 1–2 mg/L for a few hours can adversely affect fish growth resulting in fish death. Furthermore, hypoxia has substantial effects on fish physiological and immune responses, making them more susceptible to diseases. Therefore, to avoid disease outbreak in modern aquaculture production systems where fish are intensified and more crowded, increasing attention should be taken into account on DO levels.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3147375
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 249
  • ???jsp.display-item.citation.isi??? 212
social impact