The proposedworkintroducesaneuralcontrolstrategyforguidingadaptationinspikingneuralstructures acting asnonlinearcontrollersinagroupofbio-inspiredrobotswhichcompeteinreachingtargetsina virtual environment.Theneuralstructuresembeddedintoeachagentareinspiredbyaspecific partofthe insect brain,namelyCentralComplex,devotedtodetect,learnandmemorizevisualfeaturesfortargeted motor control.Areduced-ordermodelofaspikingneuronisusedasthebasicbuildingblockfortheneural controller. Thecontrolmethodologyemploysbio-inspired,correlationbasedlearningmechanismslike Spike timingdependentplasticity with theadditionofareward/punishment-basedmethodexperimentally found ininsects.Thereferencesignalfortheoverallmulti-agentcontrolsystemisimposedbyaglobal reward, whichguidesmotorlearningtodirecteachagenttowardsspecific visualtargets.Theneural controllers withintheagentsstartfromidenticalconditions:thelearningstrategyinduceseachrobottoshow anticipated targetingactionsuponspecific visualstimuli.Thewholecontrolstructurealsocontributesto make therobotsrefractoryormoresensitivetospecific visualstimuli,showingdistinctpreferencesinfuture choices. Thisleadstoanenvironmentallyinduced,targetedmotorcontrol,evenwithoutadirect communication amongtheagents,givingrobots,whilerunning,theabilitytoperformadaptationinreal- time. Experiments,carriedoutinadynamicsimulationenvironment,showthesuitabilityoftheproposed approach. Specific performanceindexes,likeShannon'sEntropy,areadoptedtoquantitativelyanalyze diversity andspecializationwithinthegroup.
Spiking neural controllers in multi-agent competitive systems for adaptive targeted motor learning
Patane L.;
2015-01-01
Abstract
The proposedworkintroducesaneuralcontrolstrategyforguidingadaptationinspikingneuralstructures acting asnonlinearcontrollersinagroupofbio-inspiredrobotswhichcompeteinreachingtargetsina virtual environment.Theneuralstructuresembeddedintoeachagentareinspiredbyaspecific partofthe insect brain,namelyCentralComplex,devotedtodetect,learnandmemorizevisualfeaturesfortargeted motor control.Areduced-ordermodelofaspikingneuronisusedasthebasicbuildingblockfortheneural controller. Thecontrolmethodologyemploysbio-inspired,correlationbasedlearningmechanismslike Spike timingdependentplasticity with theadditionofareward/punishment-basedmethodexperimentally found ininsects.Thereferencesignalfortheoverallmulti-agentcontrolsystemisimposedbyaglobal reward, whichguidesmotorlearningtodirecteachagenttowardsspecific visualtargets.Theneural controllers withintheagentsstartfromidenticalconditions:thelearningstrategyinduceseachrobottoshow anticipated targetingactionsuponspecific visualstimuli.Thewholecontrolstructurealsocontributesto make therobotsrefractoryormoresensitivetospecific visualstimuli,showingdistinctpreferencesinfuture choices. Thisleadstoanenvironmentallyinduced,targetedmotorcontrol,evenwithoutadirect communication amongtheagents,givingrobots,whilerunning,theabilitytoperformadaptationinreal- time. Experiments,carriedoutinadynamicsimulationenvironment,showthesuitabilityoftheproposed approach. Specific performanceindexes,likeShannon'sEntropy,areadoptedtoquantitativelyanalyze diversity andspecializationwithinthegroup.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.