Learning and reproducing temporal sequences is a fundamental ability used by living beings to adapt behavior repertoire to environmental constraints. This paper is focused on the description of a model based on spiking neurons, able to learn and autonomously generate a sequence of events. The neural architecture is inspired by the insect Mushroom Bodies (MBs) that are a crucial center for multimodal sensory integration and behaviour modulation. The sequence learning capability coexists, within the insect brain computational model, with all the other features already addressed like attention, expectation, learning classification and others. This is a clear example that a unique neural structure is able to cope concurrently with a plethora of behaviours. Simulation results and robotic experiments are reported and discussed
Modelling the insect Mushroom Bodies: Application to sequence learning
Patane L.
;
2015-01-01
Abstract
Learning and reproducing temporal sequences is a fundamental ability used by living beings to adapt behavior repertoire to environmental constraints. This paper is focused on the description of a model based on spiking neurons, able to learn and autonomously generate a sequence of events. The neural architecture is inspired by the insect Mushroom Bodies (MBs) that are a crucial center for multimodal sensory integration and behaviour modulation. The sequence learning capability coexists, within the insect brain computational model, with all the other features already addressed like attention, expectation, learning classification and others. This is a clear example that a unique neural structure is able to cope concurrently with a plethora of behaviours. Simulation results and robotic experiments are reported and discussedPubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.