The treatment in NH4OH of Fe-Silicalite (Fe-MFI)catalysts creates mesopores with a different mechanism with respect to the conventional desilication treatment. A reassembling of Fe-MFI nanocrystals is induced by the creation of isolated defects on the surface of these nanocrystals, as well as a change in the amorphous layer between nanocrystals acting as “glue” to assemble them into larger round-shaped particles occurs. The reassembling process induces also changes in the acidity and hydrophobic character, leading to an enhanced reactivity, and influences the relatives rate constants in the HMF (5-hydroxymethylfurfural)etherification to 5-(ethoxymethyl)furan-2-carbaldehyde (EMF)via acetalization. Moreover, for treatment times with NH4OH longer than 6 h, there is an effective, although minimal, desilication process which leads to a loss of crystallinity, microporous surface area, mesoporosity and acidity characteristics with consequent worsening of the catalytic performances
Reassembly mechanism in Fe-Silicalite during NH4OH post-treatment and relation with the acidity and catalytic reactivity
Lanzafame, P.
;Papanikolaou, G.;Perathoner, S.;Centi, G.;
2019-01-01
Abstract
The treatment in NH4OH of Fe-Silicalite (Fe-MFI)catalysts creates mesopores with a different mechanism with respect to the conventional desilication treatment. A reassembling of Fe-MFI nanocrystals is induced by the creation of isolated defects on the surface of these nanocrystals, as well as a change in the amorphous layer between nanocrystals acting as “glue” to assemble them into larger round-shaped particles occurs. The reassembling process induces also changes in the acidity and hydrophobic character, leading to an enhanced reactivity, and influences the relatives rate constants in the HMF (5-hydroxymethylfurfural)etherification to 5-(ethoxymethyl)furan-2-carbaldehyde (EMF)via acetalization. Moreover, for treatment times with NH4OH longer than 6 h, there is an effective, although minimal, desilication process which leads to a loss of crystallinity, microporous surface area, mesoporosity and acidity characteristics with consequent worsening of the catalytic performancesFile | Dimensione | Formato | |
---|---|---|---|
3148552.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.