Background: Understanding the topographical organization of the cortico-basal ganglia circuitry is of pivotal importance because of the spreading of techniques such as DBS and, more recently, MR-guided focused ultrasound for the treatment of movement disorders. A growing body of evidence has described both direct cortico- and dento-pallidal connections, although the topographical organization in vivo of these pathways in the human brain has never been reported. Objective: To investigate the topographical organization of cortico- and dento-pallidal pathways by means of diffusion MRI tractography and connectivity based parcellation. Methods: High-quality data from 100 healthy subjects from the Human Connectome Project repository were utilized. Constrained spherical deconvolution–based tractography was used to reconstruct structural cortico- and dento-pallidal connectivity. Connectivity-based parcellation was performed with a hypothesis-driven approach at three different levels: functional regions (limbic, associative, sensorimotor, and other), lobes, and gyral subareas. Results: External globus pallidus segregated into a ventral associative cluster, a dorsal sensorimotor cluster, and a caudal “other” cluster on the base of its cortical connectivity. Dento-pallidal connections clustered only in the internal globus pallidus, where also associative and sensorimotor clusters were identified. Lobar parcellation revealed the presence in the external globus pallidus of dissociable clusters for each cortical lobe (frontal, parietal, temporal, and occipital), whereas in internal globus pallidus only frontal and parietal clusters were found out. Conclusion: We mapped the topographical organization of both internal and external globus pallidus according to cortical and cerebellar connections. These anatomical data could be useful in DBS, radiosurgery and MR-guided focused ultrasound targeting for treating motor and nonmotor symptoms in movement disorders.

Structural connectivity-based topography of the human globus pallidus: Implications for therapeutic targeting in movement disorders

Cacciola A.
Primo
;
Milardi D.;Rizzo G.;Anastasi G.;Quartarone A.
Ultimo
2019-01-01

Abstract

Background: Understanding the topographical organization of the cortico-basal ganglia circuitry is of pivotal importance because of the spreading of techniques such as DBS and, more recently, MR-guided focused ultrasound for the treatment of movement disorders. A growing body of evidence has described both direct cortico- and dento-pallidal connections, although the topographical organization in vivo of these pathways in the human brain has never been reported. Objective: To investigate the topographical organization of cortico- and dento-pallidal pathways by means of diffusion MRI tractography and connectivity based parcellation. Methods: High-quality data from 100 healthy subjects from the Human Connectome Project repository were utilized. Constrained spherical deconvolution–based tractography was used to reconstruct structural cortico- and dento-pallidal connectivity. Connectivity-based parcellation was performed with a hypothesis-driven approach at three different levels: functional regions (limbic, associative, sensorimotor, and other), lobes, and gyral subareas. Results: External globus pallidus segregated into a ventral associative cluster, a dorsal sensorimotor cluster, and a caudal “other” cluster on the base of its cortical connectivity. Dento-pallidal connections clustered only in the internal globus pallidus, where also associative and sensorimotor clusters were identified. Lobar parcellation revealed the presence in the external globus pallidus of dissociable clusters for each cortical lobe (frontal, parietal, temporal, and occipital), whereas in internal globus pallidus only frontal and parietal clusters were found out. Conclusion: We mapped the topographical organization of both internal and external globus pallidus according to cortical and cerebellar connections. These anatomical data could be useful in DBS, radiosurgery and MR-guided focused ultrasound targeting for treating motor and nonmotor symptoms in movement disorders.
2019
File in questo prodotto:
File Dimensione Formato  
Structural Connectivity_2019.pdf

accesso aperto

Descrizione: Articolo principale a stampa
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.57 MB
Formato Adobe PDF
2.57 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3149247
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 37
social impact