Nowadays, we are observing a growing interest about Big Data applications in different healthcare sectors. One of this is definitely cardiology. In fact, electrocardiogram produces a huge amount of data about the heart health status that need to be stored and analysed in order to detect a possible issues. In this paper, we focus on the arrhythmia detection problem. Specifically, our objective is to address the problem of distributed processing considering big data generated by electrocardiogram (ECG) signals in order to carry out pre-processing analysis. Specifically, an algorithm for the identification of heartbeats and arrhythmias is proposed. Such an algorithm is designed in order to carry out distributed processing over the Cloud since big data could represent the bottleneck for cardiology applications. In particular, we implemented the Menard algorithm in Apache Spark in order to process big data coming form ECG signals in order to identify arrhythmias. Experiments conducted using a dataset provided by the Physionet.org European ST-T Database show an improvement in terms of response times. As highlighted by our outcomes, our solution provides a scalable and reliable system, which may address the challenges raised by big data in healthcare.

A Big Data Analytics Approach for the Development of Advanced Cardiology Applications

Carnevale, Lorenzo
Primo
;
Celesti, Antonio
Secondo
;
Fazio, Maria
Penultimo
;
Villari, Massimo
Ultimo
2020-01-01

Abstract

Nowadays, we are observing a growing interest about Big Data applications in different healthcare sectors. One of this is definitely cardiology. In fact, electrocardiogram produces a huge amount of data about the heart health status that need to be stored and analysed in order to detect a possible issues. In this paper, we focus on the arrhythmia detection problem. Specifically, our objective is to address the problem of distributed processing considering big data generated by electrocardiogram (ECG) signals in order to carry out pre-processing analysis. Specifically, an algorithm for the identification of heartbeats and arrhythmias is proposed. Such an algorithm is designed in order to carry out distributed processing over the Cloud since big data could represent the bottleneck for cardiology applications. In particular, we implemented the Menard algorithm in Apache Spark in order to process big data coming form ECG signals in order to identify arrhythmias. Experiments conducted using a dataset provided by the Physionet.org European ST-T Database show an improvement in terms of response times. As highlighted by our outcomes, our solution provides a scalable and reliable system, which may address the challenges raised by big data in healthcare.
2020
File in questo prodotto:
File Dimensione Formato  
information-11-00060.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.16 MB
Formato Adobe PDF
4.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3150045
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact